The Year in Machine Learning (Part Three)

This is the third installment in a four-part review of 2016 in machine learning and deep learning. In Part One, I covered Top Trends in the field, including concerns about bias, interpretability, deep learning’s explosive growth, the democratization of supercomputing, and the emergence of cloud machine learning platforms. In Part Two, I surveyed significant developments in Open Source machine learning projects, such as R, Python, Spark, Flink, H2O, TensorFlow, and others.

In this installment, we will review the machine learning and deep learning initiatives of Big Tech Brands — industry leaders with big budgets for software development and marketing. Big Tech Brands fall into three groups:

— SAS is the software revenue leader in predictive analytics. It has a unique business model and falls into its own category.

— Companies such as IBM, Microsoft, Oracle, SAP, and Teradata have all have strong franchises in the data warehousing market, and all except Teradata offer widely used business intelligence software. These companies have the financial strength to develop, market and cross-sell machine learning software to their existing customer base, and can impact the market if they choose to do so.

Dell and HPE dabbled in advanced analytics and exited the market in 2016.

I covered Google and Amazon Web Services in Part One. Although neither company has a strong position in business analytics at present, they are making moves in that direction. Google set up Google Cloud Machine Learning as a distinct product group this year to service that market, and Amazon introduced QuickSight, a business analytics service.

Regular readers know that I favor open source software — as do most data scientists. Among the companies covered in this installment, IBM and Microsoft are making substantial commitments to the open source model, including direct contributions to open source software projects. They deserve kudos for that. Teradata is investing in Presto SQL, for which they get polite applause. Oracle and SAP leverage open source software in their solutions but make no significant contributions. SAS embraces open source the way a cat embraces a porcupine.

In Part Four, I will survey machine learning startups, and deliver results from the Bottom Story of the Year poll.

SAS

SAS leads the market in licensing revenue for advanced and predictive analytics software, according to IDC. The company has a loyal following among statisticians, actuaries, life scientists and others whose work depends on statistical analysis.

Partnering with IBM, SAS built its business in the 1970s on the strength of its software for the IBM System/360 mainframe. IBM promoted the software to its enterprise customers to increase adoption and use of its hardware. SAS software still runs on the mainframe, and the company continues to earn a significant share of its revenue on that platform. IBM has mainframe customers who use the big box exclusively for SAS.

In the 1990s, SAS successfully transitioned to a multi-vendor architecture and rebuilt its software to run on many different hardware platforms and operating systems. During this period, SAS established a reputation for industrial-strength and enterprise-grade software — in contrast to vendors like SPSS, who focused on building easy-to-use software for the desktop.

On the face of it, SAS has struggled to transition from server-based computing to the contemporary world of distributed architecture and cloud platforms. In the past ten years, the company has announced multiple initiatives to improve the performance and scalability of its products, with mixed success. In April, SAS announced Viya, its third attempt to deliver advanced analytics in a distributed MPP architecture.

What is SAS Viya? How does it differ from SAS’ previous attempts at high-performance design? Let’s peruse the brochure:

Cloud-ready, elastic and scalable

 

SAS Viya is built to be elastic and scalable for both private and public clouds. Analytical, in-memory computations are optimized for unconstrained environments, but they can also adjust for constrained environments. The elastic processing automatically adapts to needs and available resources – spinning up or winding down computing capacity as needed. Elastic scalability lets you quickly experiment with different scenarios and apply more complex approaches to larger amounts of streaming data.

Ahem. Any software is “cloud-ready,” in the sense that a Linux instance is a Linux instance whether it runs on-premises or in the cloud. And any software is elastic when you deploy it in a virtual appliance, such as an Amazon Machine Image. That includes SAS 9.4, which SAS touted as “cloud-ready” in 2014, and previous versions of SAS, which you could deploy in AWS even though SAS did not formally support the platform.

If you want to spin up software instances, however, you need software licenses. With open source software, such as Python, R, or Spark, that’s not an issue — you can spin up as many instances as you like without violating license agreements. Commercial software is more complicated since you need to pay for the licenses you want to spin up. Some vendors, like HPE and Teradata, tried to address this problem by marketing their own cloud platforms to compete with Amazon Web Services; they failed miserably. Others, like Oracle, partner with AWS to deliver their software in the cloud — either as a bundled managed service or on a “Bring Your Own License” (BYOL) model.

You can’t have elastic computing with commercial software without a flexible licensing model. Pay-for-what-you-use licensing poses a problem for vendors like SAS, because if customers only pay for what they use, they invariably pay a lot less than they do under term licensing. Most commercial software customers are over-licensed — they’re paying for a lot of software they don’t use. That is why revenue from on-premises software licensing is declining much faster than revenue from cloud-based subscriptions is rising. In the cloud, you can do more with less.

The bottom line is this: unless Viya is available under an elastic pricing model, nobody cares that it is “cloud-ready, elastic and scalable.”

If you want to have a little fun, the next time your SAS rep touts Viya’s elasticity, ask him what it will cost per hour to license the software. Watch him squirm.

Open analytics coding environment

 

Empower your data scientists with SAS Analytics that are easily available from a variety of programming languages. Whether it’s a Python notebook, Java client, Lua scripting interface or SAS, your modelers and data scientists can easily access the power of SAS for data manipulation, advanced analytics and analytical reporting.

We’ve all been waiting for the ability to run SAS from Lua.

Resilient architecture with guaranteed failover

 

For answers you depend on, you need analytical processing power you can count on. You need all your analytical computations to finish processing without interruption. The fault-tolerant design of SAS Viya automatically detects server failure, even in multiplatform processing environments, and redistributes processing as needed. It also manages several copies of data on the processing cluster. If a machine in the cluster becomes unavailable or fails, the required data is retrieved from another block to quickly continue processing. These self-healing mechanisms ensure high availability for uninterrupted processing and automated recovery.

“It runs on Hadoop.”

Interviewed in Forbes, SAS CEO Jim Goodnight speaks at length about Viya:

We are ready for big data…(we) just released our first version of our new Viya architecture, which is massively parallel computing where we spread the data out over dozens of servers and then use all the cores inside those servers to process the data in parallel. So we might have 500 cores working on the data all at once in parallel, and that allows it to handle some really, really big problems that we’ve never even thought of before. Things like logistic regression.

Someone should feed Dr. G. better talking points. Just for the record, commercially available software for logistic regression running in a massively parallel (MPP) environment first hit the market in 1989. Distributed logistic regression is currently available in multiple software packages, including one introduced by SAS five years ago.

Logistic regression (a non-linear model) is an iterative process. Essentially, you’re trying to estimate the parameters in the model, and so you take a guess, you’ve got to run through the data using that guess, then to refine it and do another guess and run through the data again, and you keep doing this over and over and over until the parameters converged or they don’t change much at all anymore. That can take 25 to 30 passes of the data. Now, in the old days, we used to have to read the data that many times. Now, it’s in memory. We put it in memory and it stays in memory. It’s spread out over 500 cores and then each one just does a little piece of the work, and so we can do those 25 iterations in just a few minutes, whereas it used to take hours.

It’s just like Spark, but with a license key.

(Viya’s) really our third generation of massively parallel computing. We’ve been working on this problem for seven years, and this is our third major crack at doing it, and this time we’ve got everything figured out.

In 2018 he’ll be talking about a fourth crack in nine years.

It’s possible that Viya works better than SAS’ previous cracks at high-performance analytics. That is a weak hurdle, however; SAS needs to demonstrate that its high-cost proprietary distributed framework is better than Apache Spark, which is rapidly emerging as the standard enterprise platform for Big Data.

While SAS supports machine learning techniques in several different products, it lags in deep learning. The SAS Marketing team created some helpful content about deep learning, but look carefully at that page — you won’t find an actual product for deep learning. Yes, I know that SAS Enterprise Miner supports multilayer perceptrons; but SAS does not support GPUs, Xeon Phi, Intel Nervana or any other high-performance architecture that will make it possible for you to train a deep neural net while you’re young.

If you think that an eighteen-year-old product running on one server is sufficient for your deep learning project, you should definitely talk to SAS. Keep in mind, though, that there is a reason that NVIDIA’s DGX-1 GPU-accelerated deep learning box has the power of 250 conventional servers: you actually need that kind of horsepower.

The rest of SAS’ business seems to be chugging along well enough. A combination of renewals, upgrades and upsells in existing accounts should produce low single-digit revenue growth for 2016, which is not a bad track record when you consider the declines reported by IBM, Oracle, and Teradata.

Business Analytics Leaders

The five companies in this group sell at least a billion dollars a year in business analytics software, according to IDC’s most recent worldwide software market share report. However, most of their revenue comes from data warehousing and business intelligence software; they all trail SAS in predictive analytics revenue.

Software licensing revenue is a misleading measure, however, due to the growing presence of open source software. IBM, Microsoft, and Oracle for example, actively use open source machine learning software to extend the reach of their data warehousing and business intelligence platforms, where they both have strong entries. IBM uses Spark as a foundation for many of its products; Microsoft has integrated R with SQL Server and PowerBI, and actively promotes the use of R for its enterprise customers. Oracle has taken a similar approach.

IBM

Unlike SAS, declining tech giant IBM never invested in a proprietary distributed framework for SPSS, its flagship software for advanced analytics. Instead, the company chose to leverage in-database engines (DB2, Netezza, and Oracle) and open source frameworks (MapReduce and Spark.)

IBM contributes to Apache Spark, which it uses in several products, and also to Apache SystemML. IBM Research developed the core of SystemML, which IBM donated to Apache in 2015. IBM has also visibly contributed to the Spark community through its efforts in education and training.

In 2016, IBM continued to market SPSS Statistics and SPSS Modeler, software brands it acquired in 2007. Release 18 of SPSS Modeler, announced in March, includes such things as support for machine learning in DB2 and support for IBM’s General Parallel File System (GPFS) in BigInsights. There aren’t too many data scientists who care about such things, but they appeal to the 150 or so enterprises with CIOs who still believe that nobody ever got fired for buying IBM.

In Part One of this review, I covered IBM’s machine learning moves in IBM Cloud, which I would characterize as Shakespearean, as in Much Ado About Nothing.

Microsoft

Microsoft had quite a year in machine learning and deep learning. As I noted in Parts One and Two, in 2016 MSFT launched cognitive APIs in Azure for vision, speech, language, knowledge, and search; a managed service for Spark in Azure HDInsight; enhancements to Azure Machine Learning and Version 2.0 of its deep learning framework, rebranded as Microsoft Cognitive Toolkit.

That’s just for starters.

In January, Microsoft announced Microsoft R Server, a rebranding of the product it acquired with Revolution Analytics in 2015. Microsoft R Server includes an enhanced R distribution, a scalable back-end, and integration tools. During the year, Microsoft two major releases for R Server. In Release 8, the company added push-down integration with Spark. Release 9 updated the Spark integration for Spark 2.0, and added MicrosoftML, a new R package for machine learning.

Microsoft announced SQL Server 2016 in March with embedded SQL Server R Services. On the Revolutions blog, David Smith reports on the launch. Tomaž Kaštrun explains what you can do with R services in SQL Server.

In November, after an extended preview, Microsoft announced the general availability of R Server for Azure HDInsight, a scale-out implementation of R integrated with Spark clusters created from HDInsight.

Also in Azure, Microsoft added a Linux version of the Data Science Virtual Machine (DSVM). Previously available as a Windows instance, DSVM includes Revolution R Open, Anaconda, Visual Studio Community Edition, PowerBI Desktop, SQL Server Express and the Azure SDK.

PowerBI, Microsoft’s powerful visualization tool, added R support in August. In ComputerWorld, Sharon Machlis, an R user, enthused. More here, on the Revolutions blog.

R Tools for Visual Studio launched to public preview in March, and to general availability in September. Also in September, Microsoft released the Microsoft R Client, a free data science tool that works with Microsoft R Open and the ScaleR distributed back end.

Microsoft data scientists Gopi Krishna Kumar, Hang Zhang and Jacob Spoelstra developed a methodology for data science, which they presented at the Microsoft Machine Learning and Data Science Summit 2016 in September. David Smith reports. The method, which the authors call Team Data Science Process, includes a standard directory structure for managing project artifacts using a system such as Git. It also includes open source utilities to support the process.

Other than that, it was a quiet year in Redmond.

Oracle

Oracle has a surprisingly robust set of machine learning tools that appeal to Oracle-centric organizations. They include:

Oracle Data Mining (ODM), a suite of machine learning algorithms that run as native SQL functions in Oracle Database.

Oracle Data Miner, a client application for ODM with a business user interface.

Oracle R Distribution (ORD), an enhanced free R distribution.

Oracle R Enterprise (ORE), Oracle R Distribution packaged with tools to integrate R with Oracle Database.

Oracle R Advanced Analytics for Hadoop (ORAAH), a set of R bindings with native algorithms and an interface to Spark.

Oracle claims that ORAAH’s native algorithms are faster than Spark, but ORAAH has only two algorithms, so nobody cares. Oracle OEMs Cloudera, so the Spark release is at least one major release behind the rest of the world.

Other than some dot releases for the components cited above, I don’t see a lot of movement for Oracle in 2016.

SAP

SAP introduced an update to its predictive analytics capabilities, now branded as SAP Business Objects Predictive Analytics 3.0. This product includes two separate automation capabilities, one branded as Predictive Factory, the second as HANA Automated Predictive Library. Predictive Factory, like SAS Factory Miner, is a scripting tool that enables a data scientist to create a modeling pipeline and schedules it for execution; it does not automate the data science process itself.  HANA Automated Predictive Library is a set of functional calls that users can include in SQL scripts.

HANA Automated Predictive Library is a set of functional calls that users can include in SQL scripts. It’s a product that might appeal to SAP HANA bigots and nobody else.

SAP acquired KXEN and its InfiniteInsight software in 2014. Customer satisfaction promptly dropped through the floor, and SAP trails all other advanced analytics vendors rated in a Gartner survey. Legacy InfiniteInsight customers fall into two camps: (a) those whose IT organizations are heavily invested in SAP, and (b) everyone else. The former seem to be sticking with the software as SAP integrates it into its product line; the latter are heading for the exits.

Teradata

Declining data warehouse vendor Teradata thinks of itself as an analytics powerhouse. In reality, most of its revenue comes from data warehousing, where the company gets high marks from analysts like Gartner.

You could say that Teradata has a commanding position at the bottom of the analytics stack.

Teradata’s executive leadership — if you can call it that — completely missed the implications of Hadoop and cloud computing. Instead, they bet that the Teradata brand was beloved by IT executives, who would keep on buying boxes in bulk. As a result of that blinkered view of the world, the company today is worth a third of what it was worth five years ago. Its product sales have declined for ten straight quarters, seven in a row at double digits.

After a dismal first quarter, Teradata’s board fired accepted the resignation of CEO Mike Koehler; longtime board member Victor Lund stepped into the breach. In September, at the Teradata Partners conference, Lund announced that Teradata would reposition itself as an “analytics solutions” firm.

That may not sit well with SAS, Teradata’s primary partner for advanced analytics software, which also views itself as an “analytic solutions” firm. The difference, of course, is that SAS has been delivering solutions for a long time and has street cred with executives because it actually has sophisticated business solutions, with actual software and intellectual property, while Teradata appears to have little more than big ideas and PowerPoint.

Pro tip for Teradata management: just because you want to move up the value chain does not mean that you have the ability to do so.

In other developments, the company announced that Aster finally supports Spark, two years after anyone might have cared. Teradata also announced that Aster’s analytics are now available for deployment in Hadoop. Aster on Hadoop is a bladeless knife without a handle — a commercial machine learning library that competes with umpteen open source libraries. Aster also competes with another Teradata partner, Fuzzy Logix, whose dbLytix library is six times richer and more mature.

If someone proposes to bet that “solutions” and unbundled Aster will reverse Teradata’s decline, take the under.

Other Tech Giants

We mention two remaining giants, Dell and HPE, only to note their passing from the scene.

HPE

HPE announced the sale of its software assets (including Vertica and Haven) to U.K.-based Micro Focus for $2.5 billion in cash. Under terms of the deal, Micro Focus also granted equity with a soft valuation of $6.3 billion directly to HPE shareholders. HPE paid almost $20 billion over ten years for these assets. The valuation works out to about 2.4 times revenue, which means that both parties agree the business has little or no growth potential. Micro Focus has a reputation for firing people cutting costs, so if you’re working for Haven or Vertica, this may be a good time to dust off your resume.

In March, HPE announced Haven OnDemand, available on Microsoft Azure. Haven is a loose bundle of software assets salvaged from the train wreck of Autonomy, Vertica, ArcSight and HP Operations Management machine learning suite, initially branded as HAVEn and announced by HP in June 2013.  In 2015, HP released Haven on Helion Public Cloud, HP’s failed cloud platform. So the March announcement is a re-re-release of the software.

Three years into its product life cycle, Haven hasn’t exactly caught on with data scientists. Just 2 out of 2,895 respondents to the KDnuggets 2016 Data Science Software Usage poll and none in the O’Reilly 2016 Data Science Salary Survey said they use the software. Adding insult to injury, Haven failed to make KDnuggets’ list of the top 50 machine learning APIs, a list that includes the likes of Ersatz, Hutoma, and Skyttle.

Vertica still has some traction with data lovers whose analysis needs are simple enough to satisfy with SQL. Currently, it’s the 28th most popular relational database, according to DB-Engines, which is about on par with Netezza and Greenplum and a lot better than Aster. Expect this ranking to drop like a stone in the hands of Micro Focus.

Dell/EMC

Dell entered the advanced analytics business by acquiring Statsoft in 2014, a move that impressed nobody. In 2016, Dell exited by selling its software division to private equity investors.

Goodbye, Dell. We hardly knew ye.

Looking Ahead: Big Analytics in 2016

Every year around this time I review last year’s forecast and publish some thoughts about the coming year.

2015 Assessment

First, a brief review of my predictions for 2015:

(1) Apache Spark usage will explode.

Nailed it.

(2) Analytics in the cloud will take off.

In 2015, all of the leading cloud platforms — AWS, Azure, IBM and Google — released new tools for advanced analytics and machine learning.  New cloud-based providers specializing in advanced analytics, such as Qubole and Domino Data, emerged.

Cloud platform providers do not break out revenue by workload, so it’s difficult to measure analytics activity in the cloud; anecdotally, though, there are a growing number of analysts, vendors and service providers whose sole platform is the cloud.

(3) Python will continue to gain on R as the preferred open source analytics platform.

While Python continues to add functionality and gain users, so does R, so it’s hard to say that one is gaining on the other.

(4) H2O will continue to win respect and customers in the Big Analytics market.

In 2015, H2O doubled its user base, expanded its paid subscriber base fourfold and landed a $20 million “B” round.  Not bad for a company that operates on a true open source business model.

(5) SAS customers will continue to seek alternatives.

Among analytic service providers (ASPs) the exit from SAS is a stampede.

With a half dozen dot releases, SAS’ distributed in-memory products are stable enough that they are no longer the butt of jokes.  Customer adoption remains thin; customers are loyal to SAS’ legacy software, but skeptical about the new stuff.

2016 Themes

Looking ahead, here is what I see:

(1) Spark continues its long march into the enterprise.

With Cloudera 6, Spark will be the default processing option for Cloudera workloads.  This does not mean, as some suggest, that MapReduce is dead; it does mean that a larger share of new workloads will run on Spark.  Many existing jobs will continue to run in MapReduce, which works reasonably well for embarrassingly parallel workloads.

Hortonworks and MapR haven’t followed Cloudera with similar announcements yet, but will do so in 2016.  Hortonworks will continue to fiddle around with Hive on Tez, but will eventually give up and embrace Hive on Spark.

SAS will hold its nose and support Spark in 2016.  Spark competes with SAS’ proprietary back end, but it will be forced to support Spark due to its partnerships with the Hadoop distributors.  Analytic applications like Datameer and Microsoft/Revolution Analytics ScaleR that integrate with Hadoop through MapReduce will rebuild their software to interface with Spark.

Spark Core and Spark SQL will remain the most widely used Spark components, with general applicability across many use cases.  Spark MLLib suffers from comparison with alternatives like H2O and XGBoost; performance and accuracy need to improve.  Spark Streaming faces competition from Storm and Flink; while the benefits of “pure” streaming versus micro-batching are largely theoretical, it’s a serious difference that shows up in benchmarks like this.

With no enhancements in 2015, Spark GraphX is effectively dead.  The project leadership team must either find someone interested in contributing, fold the library into MLLib, or kill it.

(2) Open source continues to eat the analytics software world.

If all you read is Gartner and Forrester, you may be inclined to think that open source is just a blip in the market.  Gartner and Forrester ignore open source analytics for two reasons: (1) they get paid by commercial vendors, and (2) users don’t need “analysts” to tell them how to evaluate open source software.  You just download it and check it out.

Surveys of actual users paint a different picture.  Among new grads entering the analytics workforce, using open source is as natural as using mobile phones and Yik Yak; big SAS shops have to pay to send the kids to training.  The best and brightest analysts use open source tools, as shown by the 2015 O’Reilly Data Science Salary Survey;  while SAS users are among the lowest paid analysts, they take consolation from knowing that SPSS users get paid even less.

IBM’s decision in 2015 to get behind Spark exemplifies the movement towards open source.  IBM ranks #2 behind SAS in advanced analytics software revenue, but chose to disrupt itself by endorsing Spark and open-sourcing SystemML.  IBM figures to gain more in cloud and services revenue than it loses in cannibalized software sales.  It remains to be seen how well that will work, but IBM knows how to spot a trend when it sees it.

Microsoft’s acquisition of Revolution Analytics in 2015 gives R the stamp of approval from a company that markets the most widely implemented database (SQL Server) and the most widely used BI tool (Excel).  As Microsoft rolls out its R server and SQL-embedded R, look for a big jump in enterprise adoption.  It’s no longer possible for folks to dismiss R as some quirky tool used by academics and hobos.

The open source business model is also attracting capital.  Two analytics vendors with open source models (H2O and RapidMiner) recently landed funding rounds, while commercial vendors Skytree and Alpine languish in the funding doldrums and cut headcount.  Palantir and Opera, the biggest dogs in the analytics startup world, also leverage open source.

Increasingly, the scale-out distributed back end for Big Analytics is an open source platform, where proprietary architecture sticks out like a pimple.  Commercial software vendors can and will thrive when they focus on the end user.  This approach works well for AtScale, Alteryx, RapidMiner and ZoomData, among others.

(3) Cloud emerges as the primary platform for advanced analytics.

By “cloud” I mean all types of cloud: public, private, virtual private and hybrid, as well as data center virtualization tools, such as Apache Mesos.  In other words, self-service elastic provisioning.

High-value advanced analytics is inherently project-oriented and ad-hoc; the most important questions are answered only once.  This makes workloads for advanced analytics inherently volatile.  They are also time-sensitive and may require massive computing resources.

This combination  — immediate need for large-scale computing resources for a finite period — is inherently best served by some form of cloud.  The form of cloud an organization chooses will depend on a number of factors, such as where the source data resides, security concerns and the organization’s skills in virtualization and data center management.  But make no mistake: organizations that do not leverage cloud computing for advanced analytics will fall behind.

Concerns about cloud security for advanced analytics are largely bogus: rent-seeking apologetics from IT personnel who (rightly) view the cloud as a threat to their fiefdom.  Sorry guys — the biggest data breaches in the past two years were from on-premises systems.  Arguably, data is more secure in one of the leading clouds than it is in on premises.

For more on this, read my book later this year. 🙂

(4) Automated machine learning tools become mainstream.

As I’ve written elsewhere, automated machine learning is not a new thing.  Commercial and open source tools that automate modeling in various ways have been available since the 1980s.  Most, however, automated machine learning by simplifying the problem in ways that adversely impact model quality.  In 2016, software will be available to enterprises that delivers expert-level predictive models that win Kaggle competitions.

Since analysts spend 80% of their time data wrangling, automated machine learning tools will not eliminate the hiring crunch in advanced analytics; one should be skeptical of vendor claims that “it’s so easy that even a caveman can do it.”  The primary benefit of automation will be better predictive models built consistently to best practices.  Automation will also expand the potential pool of users from hardcore data scientists to “near-experts”, people with business experience or statistical training who are not skilled in programming languages.

(5) Teradata continues to struggle.

Listening to Teradata’s Q3 earnings call back in November, I thought of this:

100_anniversary_titanic_sinking_by_esai8mellows-d4xbme8

CEO Mike Koehler, wiping pie from his face after another quarterly earnings fail, struggled to explain a coherent growth strategy.  It included (a) consulting services; (b) Teradata software on AWS; (c) Aster on commodity hardware.

Well, that dog won’t hunt.

— Teradata’s product sales drive its consulting revenue.  No product sales, no consulting revenue.   Nobody will ever hire Teradata for platform-neutral enterprise Big Data consulting projects, so without a strategy to build product sales, consulting  revenue won’t grow either.

— Teradata’s principal value added is its ability to converge software and hardware into an integrated appliance.  By itself, Teradata software itself is nothing special; there are plenty of open source alternatives, like Apache Greenplum.  Customers who choose to build a data warehouse on AWS have many options, and Teradata won’t be the first choice.  Meanwhile, IBM, Microsoft and Oracle are light years ahead of Teradata delivering true hybrid cloud databases.

— Aster on commodity hardware is a SQL engine with some prebuilt apps.  It runs through MapReduce, which was kind of cool in 2012 but DOA in today’s market: customers who want a SQL engine that runs on commodity hardware have multiple open source options, including Presto, which Teradata also embraces.

Meanwhile, Teradata’s leadership team actually spent time with analysts talking about the R&D tax credit, which seemed like shuffling deck chairs.  The stock is worth about a third of its value in 2012 because the company has repeatedly missed earnings forecasts, and investors have no confidence in current leadership.

At current market value, Teradata is acquisition bait, but it’s not clear who would buy it.  My money’s on private equity, who will cut headcount by half and milk the existing customer base.   There are good people at Teradata; I would advise them all to polish their resumes.

Teradata Lays Another Egg

Teradata reports Q3 revenue of $606 million, down 3% in “constant” dollars, down 9% in actual dollars, the kind you can spend.  Product revenue, from selling software and boxes, declined 14%.

In a brutal call with analysts, CEO Mike Koehler noted: “revenue was not what we expected.”  It could have been a recorded message.

Teradata executives tried to blame the weak revenue on the strong dollar.  When pressed, however, they admitted that deferred North American sales drove the shortfall, as companies put off investments in Teradata’s big box solutions.

In other words, the dogs don’t like the dog food.

From the press release:

Teradata is in the process of making transformational changes to improve the long-term performance of the company, including offering more flexibility and options in the way customers buy Teradata products such as a software-only version of Teradata as well as making Teradata accessible in the public cloud. The initial cloud version of Teradata will be available on Amazon’s Web Services in the first quarter of 2016.

An analyst asked about expected margins in the software-only business; Teradata executives clammed up.  The answer is zero.  Teradata without a box is a bladeless knife without a handle, competing directly with open source databases, such as Apache Greenplum.

Another analyst asked about Teradata on AWS, noting that Teradata executives previously declared that their customers would never use AWS.  Response from the executives was more mush.  HP just shuttered its cloud business; Teradata’s move to AWS implies that Teradata Cloud is toast.

Koehler also touted Teradata’s plans to offer Aster on Hadoop, citing “100 pre-built applications”.  Good luck with that.  Aster on Hadoop is a SQL engine that still runs through MapReduce; in other words it’s obsolete, a point reinforced by Teradata’s plans to move forward with Presto.  Buying an analytic database with pre-built applications is like buying a car with pre-built rides.

More from the press release:

“We remain confident in Teradata’s technology, our roadmaps and competitive leadership position in the market and we are taking actions to increase shareholder value.  We are making transformative changes to the company for longer term success, and are also aligning our cost structure for near term improvement,” said Mike Koehler, chief executive officer, Teradata Corporation. 

In other words, expect more layoffs.

“Our Marketing Applications team has made great progress this year, and has market leading solutions. As part of our business transformation, we determined it best to exclusively focus our investments and attention on our core Data and Analytics business.  We are therefore selling our Marketing Applications business. As we go through this process, we will work closely with our customers and employees for continued success.

“We overpaid for Aprimo five years ago, so now we’re looking for some greater fool to buy this dog.”

In parallel, we are launching key transformation initiatives to better align our Data and Analytics solutions and services with the evolving marketplace and to meet the needs of the new Teradata going forward.”

Update your resumes.

During the quarter, Teradata purchased approximately 8.5 million shares of its stock worth approximately $250 million.  Year to date through September 30, Teradata purchased 15.5 million shares, worth approximately $548 million.

“We have no vision for how to invest in our business, so we’re buying back the stock.”

In early trading, Teradata’s stock plunges.

In 2012, five companies led the data warehousing platform market: Oracle, IBM, Microsoft, Teradata and SAP.  Here’s how their stocks have fared since then:

  • Oracle: Up 24%
  • IBM: Down 29%
  • Microsoft: Up 77%
  • Teradata: Down 61%
  • SAP: Up 22%

Nice work, Teradata!  Making IBM look good…

Big Analytics Roundup (October 26, 2015)

Fourteen stories this week, beginning with an announcement from IBM.  This week, IBM celebrates 14 straight quarters of declining revenue at its IBM Insight conference, appropriately enough at the Mandalay Bay in Vegas, where the restaurants are overhyped and overpriced.

Meanwhile, the first Spark Summit Europe meets in Amsterdam, in the far more interesting setting of the Beurs van Berlage.  There will be a live stream on Wednesday and Thursday — details here.  Sadly, I can’t make this one — the first Spark Summit I’ve missed — but am looking forward to the live stream.

(1) IBM Announces Spark on Bluemix

At its IBM Insight beauty show, IBM announces availability of its Apache Spark cloud service.  Actually, IBM announced it back in July, but that was a public beta.   On ZDNet, Andrew Brust gushes, noting that IBM has DB2, Watson, Netezza, Cognos, TM1, SPSS, Informix and Cloudant in its portfolio.  He fails to note that of those products, exactly one — Cloudant — actually interfaces with Spark.

There were rumors that IBM would have an exciting announcement about Spark at this show, but if this is it — yawn.  Looking at IBM’s “Spark in the cloud” offering, I don’t see anything that sets it apart from other available offerings unless you have a Blue fetish.

Update: Rod Reicks of IBM writes to note that IBM’s new release of SPSS Analytics Server runs processes in Spark.  For the uninitiated, Analytics Server is a product you license from IBM that enables SPSS Modeler user to run selected operations in Hadoop.  Previous versions ran through MapReduce only.  Reicks claims that the latest version runs through Spark when available.

I say “claims” because there is no reference to this feature in IBM’s Release Notes, Installation Guide or User’s Guide.  Spark is mentioned deep in the Administrator Guide, under Troubleshooting.  So the good news is that if the product fails, IBM has some tips — one of which should be “Install Spark.”

You’d think that with IBM’s armies of people they could at least find someone to write documentation.

(2) Mahout Book FAIL

Packt announces a book on Clustering with Mahout with an entire chapter devoted to Canopy Clustering, which the Mahout team just deprecated.

(3) Concurrent Adds Spark Support

Concurrent announces Release 2.0 of Driven, its oddly-named performance management software, which now includes support for Apache Spark.

(4) Flink Founder Touts Streaming Analytics

At Big Data Spain, Data Artisans co-founder Kostas Tzoumas argues that streaming is the basis for all analytics, which is a bit over the top: as they say, if all you have is a hammer, the world looks like a nail.  Still, his deck is a nice intro to Flink, which has made some progress this year.

(5) AtScale Announces Release 3.0

AtScale, one of the more interesting startups in the BI space, delivers Release 3.0 of its OLAP-on Hadoop platform.  Rather than introducing a new user interface into the mix, AtScale makes it possible for BI users to work with Hadoop tables without jumping back and forth to programming tools.  The product currently supports Tableau, Excel, Qlik, Spotfire, MicroStrategy and JasperSoft, and runs on CDH, HDP or MapR with Impala, Spark SQL or Hive on Tez.  The new release includes enhanced role-based security, including Kerberos, Username/Password or LDAP.

(6) Neo: Graphs are Eating the World

Graph database leader Neo announces immediate availability of Neo4j 2.3, which includes what it calls “intelligent applications at scale” and Docker support.  Exactly what Neo means by “intelligence applications at scale” means is unclear, but if Neo is claiming that you no longer have to dump a graph into Spark to run a PageRank, I’ll believe it when I see it.

(7) New Notebook Sharing for Databricks 

Databricks announces new notebook sharing capabilities for its eponymous product.  On the Databricks blog, Denise Li and Dave Wang explain.

(8) Teradata: Blah, Blah, Blah, IoT, Blah, Blah Blah

At its annual user conference, Teradata announces that it’s heard about IoT.    Teradata also announces that it will make Aster available on Hadoop, which would have been interesting in 2012.  Aster, for the uninitiated, includes a SQL on MapReduce engine, which is rendered obsolete by fast SQL engines like Presto, which Teradata has just embraced.

(9) Flink Forward Redux

As I noted last week, the first Flink Forward conference met in Berlin two weeks ago.  William Benton records his impressions.

Presentations are here.  Some highlights:

  • Dongwon Kim benchmarks Flink against MR, MR on Tez and Spark.  Flink wins.
  • Kostas Tzoumas outlines the Flink development roadmap through Release 1.0.
  • Martin Junghanns explains graph analytics with Flink.
  • Anwar Rizal demonstrates streaming decision trees with Flink.

Henning Kropp offers resources for diving deeply into Flink.

(10) Pyramid Analytics Lands New Funding

Amsterdam-based BI startup Pyramid Analytics announces a $30 million “B” round to help it try to explain why we need more BI software.

(11) Harte Hanks Switches from CDH to MapR

John Leonard explains why Harte Hanks switched from Cloudera to MapR.  Most likely explanation: they were able to cut a cheaper deal with MapR.

(12) Audience Modeling with Spark

Guest posting on the Databricks blog, Eugene Zhulenev explains audience modeling with Spark ML pipelines.

(13) New Functions in Drill

On the MapR blog, Neeraja Rentachintala describes new capabilities in Drill Release 1.2, including SQL window functions.

(14) Integrating Spark and Redshift

“Redshift is where data goes to die.”  — Rob Ferguson, Spark Summit East

On the Databricks blog, Sameer Wadkar of Axiomine explains how to use the spark-redshift package, first introduced in March of this year and now in version 0.5.2.  So you can yank your data out of Redshift and do something with it. (h/t Hadoop Weekly)

Software for High Performance Advanced Analytics

Strata+Hadoop World week is a good opportunity to update the list of platforms for high-performance advanced analytics.  Vendors are hustling this week to announce their latest enhancements; I’ll post updates as needed.

First some definition.  The scope of this analysis includes software with the following properties:

  • Support for supervised and unsupervised machine learning
  • Support for distributed processing
  • Open platform or multi-vendor platform support
  • Availability of commercial support

There are three main “architectures” for high-performance advanced analytics available today:

  • Integration with an MPP database through table functions
  • Push-down integration with Hadoop
  • Native distributed computing, freestanding or co-located with Hadoop

I’ve written previously about the importance of distributed computing for high-performance predictive analytics, why it’s difficult to deliver and potentially disruptive to the analytics ecosystem.

This analysis excludes software that runs exclusively in a single vendor’s data platform (such as Netezza Analytics, Oracle Advanced Analytics or Teradata Aster‘s built-in analytic functions.)  While each of these vendors seeks to use advanced analytics to differentiate its data warehousing products, most enterprises are unwilling to invest in an analytics architecture that promotes vendor lock-in.  In my opinion, IBM, Oracle and Teradata should consider open sourcing their machine learning libraries, since they’re effectively giving them away anyway.

This analysis also excludes open source libraries “in the wild” (such as Vowpal Wabbit) that lack significant commercial support.

Open Source Software

H2O 

Distributor: H2O.ai (formerly 0xdata)

H20 is an open source distributed in-memory computing platform designed for deployment in Hadoop or free-standing clusters. Current functionality (Release 2.8.4.4) includes Cox Proportional Hazards modeling, Deep Learning, generalized linear models, gradient boosted classification and regression, k-Means clustering, Naive Bayes classifier, principal components analysis, and Random Forests. The software also includes tooling for data transformation, model assessment and scoring.   Users interact with the software through a web interface, a REST API or the h2o package in R.  H2O runs on Spark through the Sparkling Water interface, which includes a new Python API.

H2O.ai provides commercial support for the open source software.  There is a rapidly growing user community for H2O, and H2O.ai cites public reference customers such as Cisco, eBay, Paypal and Nielsen.

MADLib 

Distributor: Pivotal Software

MADLib is an open source machine learning library with a SQL interface that runs in Pivotal Greenplum Database 4.2 or PostgreSQL 9.2+ (as of Release 1.7).  While primarily a captive project of Pivotal Software — most of the top contributors are Pivotal or EMC employees — the support for PostgreSQL qualifies it for this list.    MADLib includes rich analytic functionality, including ten different regression methods, linear systems, matrix factorization, tree-based methods, association rules, clustering, topic modeling, text analysis, time series analysis and dimensionality reduction techniques.

Mahout

Distributor: Apache Software Foundation

Mahout is an eclectic machine learning project incepted in 2011 and currently included in major Hadoop distributions, though it seems to be something of an embarrassment to the community.  The development cadence on Mahout is very slow, as key contributors appear to have abandoned the project three years ago.   Currently (Release 0.9), the project includes twenty algorithms; five of these (including logistic regression and multilayer perceptron) run on a single node only, while the rest run through MapReduce.  To its credit, the Mahout team has cleaned up the software, deprecating unsupported functionality and mandating that all future development will run in Spark.  For Release 1.0, the team has announced plans to deliver several existing algorithms in Spark and H2O, and also to deliver something for Flink (for what that’s worth).  Several commercial vendors, including Predixion Software and RapidMiner leverage Mahout tooling in the back end for their analytic packages, though most are scrambling to rebuild on Spark.

Spark

Distributor: Apache Software Foundation

Spark is currently the platform of choice for open source high-performance advanced analytics.  Spark is a distributed in-memory computing framework with libraries for SQL, machine learning, graph analytics and streaming analytics; currently (Release 1.2) it supports Scala, Python and Java APIs, and the project plans to add an R interface in Release 1.3.  Spark runs either as a free-standing cluster, in AWS EC2, on Apache Mesos or in Hadoop under YARN.

The machine learning library (MLLib) currently (1.2) includes basic statistics, techniques for classification and regression (linear models, Naive Bayes, decision trees, ensembles of trees), alternating least squares for collaborative filtering, k-means clustering, singular value decomposition and principal components analysis for dimension reduction, tools for feature extraction and transformation, plus two optimization primitives for developers.  Thanks to large and growing contributor community, Spark MLLib’s functionality is expanding faster than any other open source or commercial software listed in this article.

For more detail about Spark, see my Apache Spark Page.

Commercial Software

Alpine Chorus

Vendor: Alpine Data Labs

Alpine targets a business user persona with a visual workflow-oriented interface and push-down integration with analytics that run in Hadoop or relational databases.  Although Alpine claims support for all major Hadoop distributions and several MPP databases, in practice most customers seem to use Alpine with Pivotal Greenplum database.  (Alpine and Greenplum have common roots in the EMC ecosystem).   Usability is the product’s key selling point, and the analytic feature set is relatively modest; however, Chorus’ collaboration and data cataloguing capabilities are unique.  Alpine’s customer list is growing; the list does not include a recent win (together with Pivotal) at a large global retailer.

dbLytix

Vendor: Fuzzy Logix

dbLytix is a library of more than eight hundred functions for advanced analytics; analytics run as database table functions and are currently supported in Informix, MySQL, Netezza, ParAccel, SQL Server, Sybase IQ, Teradata Aster and Teradata Database.  Embedded in SQL, analytics may be invoked from a range of application, including custom web interfaces, Microsoft Excel, popular BI tools, SAS or SPSS.   The software is highly extensible, and Fuzzy Logix offers a team of well-qualified consultants and developers for custom applications.

For those seeking the absolute cutting edge in advanced analytics, Fuzzy’s Tanay Zx Series offers more than five hundred analytic functions designed to run on GPU chips.  Tanay is available either as a software library or as an analytic appliance.

IBM SPSS Analytic Server

Vendor: IBM

Analytic Server serves as a Hadoop back end for IBM SPSS Modeler, a mature analytic workbench targeted to business users (licensed separately).  The product, which runs on Apache Hadoop, Cloudera CDH, Hortonworks HDP and IBM BigInsights, enables push-down MapReduce for a limited number of Modeler nodes.  Analytic Server supports most SPSS Modeler data preparation nodes, scoring for twenty-four different modeling methods, and model-building operations for linear models, neural networks and decision trees.  The cadence of enhancements for this product is very slow; first released in May 2013, IBM has released a single maintenance release since then.

RapidMiner Radoop

Vendor: RapidMiner

(Updated for Release 2.2)

RapidMiner targets a business user persona with a “code-free” user interface and deep selection of analytic features.  Last June, the company acquired Radoop, a three-year-old business partner based in Budapest.  Radoop brings to RapidMiner the ability to push down analytic processing into Hadoop using a mix of MapReduce, Mahout, Hive, Pig and Spark operations.

RapidMiner Radoop 2.2 supports more than fifty operators for data transformation, plus the ability to implement custom HiveQL and Pig scripts.  For machine learning, RapidMiner supports k-means, fuzzy k-means and canopy clustering, PCA, correlation and covariance matrices, Naive Bayes classifier and two Spark MLLib algorithms (logistic regression and decision trees); Radoop also supports Hadoop scoring capabilities for any model created in RapidMiner.

Support for Hadoop distributions is excellent, including Cloudera CDH, Hortonworks HDP, Apache Hadoop, MapR, Amazon EMR and Datastax Enterprise.  As of Release 2.2, Radoop supports Kerberos authentication.

Revolution R Enterprise

Vendor: Revolution Analytics

Revolution R Enterprise bundles a number of components, including Revolution R, an enhanced and commercially supported R distribution, a Windows IDE, integration tools and ScaleR, a suite of distributed algorithms for predictive analytics with an R interface.  A little over a year ago, Revolution released its version 7.0, which enables ScaleR to integrate with Hadoop using push-down MapReduce.   The mix of techniques currently supported in Hadoop includes tools for data transformation, descriptive statistics, linear and logistic regression, generalized linear models, decision trees, ensemble models and k-means clustering.   Revolution Analytics supports ScaleR in Cloudera, Hortonworks and MapR; Teradata Database; and in free-standing clusters running on IBM Platform LSF or Windows Server HPC.  Microsoft recently announced that it will acquire Revolution Analytics; this will provide the company with additional resources to develop and enhance the platform.

SAS High Performance Analytics

Vendor: SAS

SAS High Performance Analytics (HPA) is a distributed in-memory analytics engine that runs in Teradata, Greenplum or Oracle appliances, on commodity hardware or co-located in Hadoop (Apache, Cloudera or Hortonworks).  In Hadoop, HPA can be deployed either in a symmetric configuration (SAS instance on each DataNode) or in an asymmetric configuration (SAS deployed on dedicated “Analysis” nodes within the Hadoop cluster.)  While an asymmetric architecture seems less than ideal (due to the need for data movement and shuffling), it reduces the need to upgrade the hardware on every node and reduces SAS software licensing costs.

Functionally, there are five different bundles, for statistics, data mining, text mining, econometrics and optimization; each of these is separately licensed.  End users leverage the algorithms from SAS Enterprise Miner, which is also separately licensed.  Analytic functionality is rich compared to available high-performance alternatives, but existing SAS users will be surprised to see that many techniques available in SAS/STAT are unavailable in HPA.

SAS first introduced HPA in December, 2011 with great fanfare.  To date the product lacks a single public reference customer; this could mean that SAS’ Marketing organization is asleep at the switch, or it could mean that customer success stories with the product are few and far between.  As always with SAS, cost is an issue with prospective customers; other issues cited by customers who have evaluated the product include HPA’s inability to run existing programs developed in Legacy SAS, and concerns about the proprietary architecture. Interestingly, SAS no longer talks up this product in venues like Strata, pointing prospective customers to SAS In-Memory Statistics for Hadoop (see below) instead.

SAS In-Memory Statistics for Hadoop

Vendor: SAS

SAS In-Memory Statistics for Hadoop (IMSH) is an analytics application that runs on SAS’ “other” distributed in-memory architecture (SAS LASR Server).  Why does SAS have two in-memory architectures?  Good luck getting SAS to explain that in a coherent manner.  The best explanation, so far as I can tell, is a “mud-on-the-wall” approach to new product development.

Functionally, IMSH Release 2.5 supports data prep with SAS DS2 (an object-oriented language), descriptive statistics, classification and regression trees (C4.5), forecasting, general and generalized linear models, logistic regression, a Random Forests lookalike, clustering, association rule mining, text mining and a recommendation system.   Users interact with the product through SAS Studio, a web-based IDE introduced in SAS 9.4.

Overall, IMSH is a better value than HPA.  SAS prices this software based on the number of cores in the servers upon which it is deployed; while I can’t disclose the list price per core, it’s fair to say that any configuration beyond a sandbox will rapidly approach seven figures for the first year fee.

Skytree

Product: Skytree Infinity

Skytree began life as an academic machine learning project (FastLab, at Georgia Tech); the developers shopped the distributed machine learning core to a number of vendors and, finding no buyers, launched as a commercial software vendor in January 2013.  Recently rebranded from Skytree Server to Skytree Infinity, the product now includes modules for data marshaling and preparation that run on Spark.  Distributed algorithms can run as a free-standing cluster or co-located in Hadoop under YARN.  The product has a programming interface; the vendor claims ability to run from R, Weka, C++ and Python.   Neither Skytree’s modest list of algorithms nor its short list of public reference customers has changed in the past two years.