Big Analytics Roundup (March 7, 2016)

Hortonworks wins the internet this week beating the drum for its partnership with Hewlett-Packard Enterprise.  The story is down under “Commercial Announcements,” just above the story about Hortonworks’ shareholder lawsuit.

Google releases a distributed version of TensorFlow, and HDP releases a new version of Dataflow.  We are reaching peak flow.

IBM demonstrates its core values.

Folks who fret about cloud security don’t understand that data is safer in the cloud than it is on premises.  There are simple steps you can take to reduce or eliminate concerns about data security.  Here’s a practical guide to anonymizing your data.

Explainers

In the morning paper, Adrian Colyer explains trajectory data mining,

On the AWS Big Data Blog, Manjeet Chayel explains how to analyze your data on DynamoDB with Spark.

Nicholas Perez explains how to log in Spark.

Altiscale’s Andrew Lee explains memory settings in part 4 of his series of Tips and Tricks for Running Spark on Hadoop.  Parts 1-3 are here, here and here.

Sayantam Dey explains topic modeling using Spark for TF-IDF vectorization.

Slim Baltagi updates all on state of Flink community.

Martin Junghanns explains scalable graph analytics with Neo4j and Flink.

On SlideShare, Vasia Kalavri explains batch and stream graph processing with Flink.

DataTorrent’s Thomas Weise explains exactly-once processing with DataTorrent Apache Apex.

Nishant Singh explains how to get started with Apache Drill.

On the Cloudera Engineering Blog, Xuefu Zhang explains what’s new in Hive 2.0.

On the Google Cloud Platform Blog, Matthieu Mayran explains how to build a recommender with the Google Compute Engine.

In TechRepublic, James Sanders explains Amazon Web Services in what he characterizes as a smart person’s guide.  If you’re not smart and still want to use AWS, go here.

Perspectives

We continue to digest analysis from Spark Summit East:

— Altiscale’s Barbara Lewis summarizes her nine favorite sessions.

— Jack Vaughan interviews attendees from CapitalOne, eBay, DataXu and some other guy who touts open source.

— Alex Woodie interviews attendees from Bloomberg and Comcast and grabs quotes from Tony Baer, Mike Gualtieri and Anjul Bhambhri, who all agree that Spark is a thing.

In other matters:

— In KDnuggets, Gregory Piatetsky attacks the idea of the “citizen data scientist” and give it a good thrashing.

— Paige Roberts probes the true meaning of “real time.”

— MapR’s Jim Scott compares Drill and Spark for SQL, offers his opinion on the strengths of each.

— Sri Ambati describes the road ahead for H2O.ai.

Open Source Announcements

— Google releases Distributed TensorFlow without an announcement.  On KDnuggets, Matthew Mayo applauds.

— Hortonworks announces a new release of Dataflow, which is Apache NiFi with the Hortonworks logo.  New bits include integrated security and support for Apache Kafka and Apache Storm.

— On the Databricks blog, Joseph Bradley et. al. introduce GraphFrames, a graph processing library that works with the DataFrames API.  GraphFrames is a Spark Package.

Commercial Announcements

— Hortonworks announces partnership with Hewlett Packard Enterprise to enhance Apache Spark.  HPE claims to have rewritten Spark shuffle for faster performance, and HDP will help them contribute the code back to Spark.  That’s nice.  Not exactly the ground-shaking announcement HDP touted at Spark Summit East, but nice.

— Meanwhile, Hortonworks investors sue the company, claiming it lied in a November 10-Q when it said it had enough cash on hand to fund twelve months of operations.  The basic issue is that Hortonworks burns cash faster than Kim Kardashian out for a spree on Rodeo Drive, spending more than $100 million in the first nine months of 2015, leaving $25 million in the bank.  Hortonworks claims analytic prowess; perhaps it should apply some of that know-how to financial controls.

— OLAP on Hadoop vendor AtScale announces 5X revenue growth in 2015, which isn’t too surprising since they were previously in stealth.  One would expect infinite revenue growth.

Looking Ahead: Big Analytics in 2016

Every year around this time I review last year’s forecast and publish some thoughts about the coming year.

2015 Assessment

First, a brief review of my predictions for 2015:

(1) Apache Spark usage will explode.

Nailed it.

(2) Analytics in the cloud will take off.

In 2015, all of the leading cloud platforms — AWS, Azure, IBM and Google — released new tools for advanced analytics and machine learning.  New cloud-based providers specializing in advanced analytics, such as Qubole and Domino Data, emerged.

Cloud platform providers do not break out revenue by workload, so it’s difficult to measure analytics activity in the cloud; anecdotally, though, there are a growing number of analysts, vendors and service providers whose sole platform is the cloud.

(3) Python will continue to gain on R as the preferred open source analytics platform.

While Python continues to add functionality and gain users, so does R, so it’s hard to say that one is gaining on the other.

(4) H2O will continue to win respect and customers in the Big Analytics market.

In 2015, H2O doubled its user base, expanded its paid subscriber base fourfold and landed a $20 million “B” round.  Not bad for a company that operates on a true open source business model.

(5) SAS customers will continue to seek alternatives.

Among analytic service providers (ASPs) the exit from SAS is a stampede.

With a half dozen dot releases, SAS’ distributed in-memory products are stable enough that they are no longer the butt of jokes.  Customer adoption remains thin; customers are loyal to SAS’ legacy software, but skeptical about the new stuff.

2016 Themes

Looking ahead, here is what I see:

(1) Spark continues its long march into the enterprise.

With Cloudera 6, Spark will be the default processing option for Cloudera workloads.  This does not mean, as some suggest, that MapReduce is dead; it does mean that a larger share of new workloads will run on Spark.  Many existing jobs will continue to run in MapReduce, which works reasonably well for embarrassingly parallel workloads.

Hortonworks and MapR haven’t followed Cloudera with similar announcements yet, but will do so in 2016.  Hortonworks will continue to fiddle around with Hive on Tez, but will eventually give up and embrace Hive on Spark.

SAS will hold its nose and support Spark in 2016.  Spark competes with SAS’ proprietary back end, but it will be forced to support Spark due to its partnerships with the Hadoop distributors.  Analytic applications like Datameer and Microsoft/Revolution Analytics ScaleR that integrate with Hadoop through MapReduce will rebuild their software to interface with Spark.

Spark Core and Spark SQL will remain the most widely used Spark components, with general applicability across many use cases.  Spark MLLib suffers from comparison with alternatives like H2O and XGBoost; performance and accuracy need to improve.  Spark Streaming faces competition from Storm and Flink; while the benefits of “pure” streaming versus micro-batching are largely theoretical, it’s a serious difference that shows up in benchmarks like this.

With no enhancements in 2015, Spark GraphX is effectively dead.  The project leadership team must either find someone interested in contributing, fold the library into MLLib, or kill it.

(2) Open source continues to eat the analytics software world.

If all you read is Gartner and Forrester, you may be inclined to think that open source is just a blip in the market.  Gartner and Forrester ignore open source analytics for two reasons: (1) they get paid by commercial vendors, and (2) users don’t need “analysts” to tell them how to evaluate open source software.  You just download it and check it out.

Surveys of actual users paint a different picture.  Among new grads entering the analytics workforce, using open source is as natural as using mobile phones and Yik Yak; big SAS shops have to pay to send the kids to training.  The best and brightest analysts use open source tools, as shown by the 2015 O’Reilly Data Science Salary Survey;  while SAS users are among the lowest paid analysts, they take consolation from knowing that SPSS users get paid even less.

IBM’s decision in 2015 to get behind Spark exemplifies the movement towards open source.  IBM ranks #2 behind SAS in advanced analytics software revenue, but chose to disrupt itself by endorsing Spark and open-sourcing SystemML.  IBM figures to gain more in cloud and services revenue than it loses in cannibalized software sales.  It remains to be seen how well that will work, but IBM knows how to spot a trend when it sees it.

Microsoft’s acquisition of Revolution Analytics in 2015 gives R the stamp of approval from a company that markets the most widely implemented database (SQL Server) and the most widely used BI tool (Excel).  As Microsoft rolls out its R server and SQL-embedded R, look for a big jump in enterprise adoption.  It’s no longer possible for folks to dismiss R as some quirky tool used by academics and hobos.

The open source business model is also attracting capital.  Two analytics vendors with open source models (H2O and RapidMiner) recently landed funding rounds, while commercial vendors Skytree and Alpine languish in the funding doldrums and cut headcount.  Palantir and Opera, the biggest dogs in the analytics startup world, also leverage open source.

Increasingly, the scale-out distributed back end for Big Analytics is an open source platform, where proprietary architecture sticks out like a pimple.  Commercial software vendors can and will thrive when they focus on the end user.  This approach works well for AtScale, Alteryx, RapidMiner and ZoomData, among others.

(3) Cloud emerges as the primary platform for advanced analytics.

By “cloud” I mean all types of cloud: public, private, virtual private and hybrid, as well as data center virtualization tools, such as Apache Mesos.  In other words, self-service elastic provisioning.

High-value advanced analytics is inherently project-oriented and ad-hoc; the most important questions are answered only once.  This makes workloads for advanced analytics inherently volatile.  They are also time-sensitive and may require massive computing resources.

This combination  — immediate need for large-scale computing resources for a finite period — is inherently best served by some form of cloud.  The form of cloud an organization chooses will depend on a number of factors, such as where the source data resides, security concerns and the organization’s skills in virtualization and data center management.  But make no mistake: organizations that do not leverage cloud computing for advanced analytics will fall behind.

Concerns about cloud security for advanced analytics are largely bogus: rent-seeking apologetics from IT personnel who (rightly) view the cloud as a threat to their fiefdom.  Sorry guys — the biggest data breaches in the past two years were from on-premises systems.  Arguably, data is more secure in one of the leading clouds than it is in on premises.

For more on this, read my book later this year. 🙂

(4) Automated machine learning tools become mainstream.

As I’ve written elsewhere, automated machine learning is not a new thing.  Commercial and open source tools that automate modeling in various ways have been available since the 1980s.  Most, however, automated machine learning by simplifying the problem in ways that adversely impact model quality.  In 2016, software will be available to enterprises that delivers expert-level predictive models that win Kaggle competitions.

Since analysts spend 80% of their time data wrangling, automated machine learning tools will not eliminate the hiring crunch in advanced analytics; one should be skeptical of vendor claims that “it’s so easy that even a caveman can do it.”  The primary benefit of automation will be better predictive models built consistently to best practices.  Automation will also expand the potential pool of users from hardcore data scientists to “near-experts”, people with business experience or statistical training who are not skilled in programming languages.

(5) Teradata continues to struggle.

Listening to Teradata’s Q3 earnings call back in November, I thought of this:

100_anniversary_titanic_sinking_by_esai8mellows-d4xbme8

CEO Mike Koehler, wiping pie from his face after another quarterly earnings fail, struggled to explain a coherent growth strategy.  It included (a) consulting services; (b) Teradata software on AWS; (c) Aster on commodity hardware.

Well, that dog won’t hunt.

— Teradata’s product sales drive its consulting revenue.  No product sales, no consulting revenue.   Nobody will ever hire Teradata for platform-neutral enterprise Big Data consulting projects, so without a strategy to build product sales, consulting  revenue won’t grow either.

— Teradata’s principal value added is its ability to converge software and hardware into an integrated appliance.  By itself, Teradata software itself is nothing special; there are plenty of open source alternatives, like Apache Greenplum.  Customers who choose to build a data warehouse on AWS have many options, and Teradata won’t be the first choice.  Meanwhile, IBM, Microsoft and Oracle are light years ahead of Teradata delivering true hybrid cloud databases.

— Aster on commodity hardware is a SQL engine with some prebuilt apps.  It runs through MapReduce, which was kind of cool in 2012 but DOA in today’s market: customers who want a SQL engine that runs on commodity hardware have multiple open source options, including Presto, which Teradata also embraces.

Meanwhile, Teradata’s leadership team actually spent time with analysts talking about the R&D tax credit, which seemed like shuffling deck chairs.  The stock is worth about a third of its value in 2012 because the company has repeatedly missed earnings forecasts, and investors have no confidence in current leadership.

At current market value, Teradata is acquisition bait, but it’s not clear who would buy it.  My money’s on private equity, who will cut headcount by half and milk the existing customer base.   There are good people at Teradata; I would advise them all to polish their resumes.

Big Analytics Roundup (November 9, 2015)

My roundup of the Spark Summit Europe is here.

Two important events this week:

  • H2O World starts today and runs through Wednesday at the Computer History Museum in Mountain View CA.   Yotam Levy summarizes here and here.
  • Open Data Science Conference meets November 14-15 at the Marriott Waterfront in SFO

Five backgrounders and explainers:

  • At HUG London, Apache’s Ufuk Celebi delivers a nice intro to Flink.
  • On the Databricks blog, Yesware’s Justin Mills explains how his team migrates Spark applications from concept through prototype through production.
  • On Slideshare, Alpine’s Holden Karau delivers an overview of Spark with Python.
  • Chloe Green wakes from a three year slumber and discovers Spark.
  • On the Cloudera Engineering blog, Madhu Ganta explains how to build a CEP app with Spark and Drools.

Third quarter financials drive the news:

(1) MapR: We Grew 160% in Q3

MapR posts its biggest quarter ever.

(2) HDP: We Grew 168% in Q3

HDP loses $1.33 on every dollar sold, tries to make it up on volume.  Stock craters.

(3) Teradata: We Got A Box of Steak Knives in Q3

Teradata reports more disappointing sales as customers continue to defer investments in big box solutions for data warehousing.  This is getting to be a habit with Teradata; the company missed revenue projections for 2014 as well as the first and second quarters of this year.  Any company can run into headwinds, but a management team that consistently misses targets clearly does not understand its own business and needs to go.

Full report here.

(4) “B” Round for H2O.ai

Machine learning software developer H2O.ai announces a $20 million Series B round led by Paxion Capital Partners.  H2O.ai leads development of H2O, an open source project for distributed in-memory machine learning.  The company reports 25 new support customers this year.

(5) Fuzzy Logix Lands Funds

In-database analytics vendor Fuzzy Logix announces a $5 million “A” round from New Science Ventures.  Fuzzy offers a library of analytic functions that run in a number of high-performance databases and in HiveQL.

(6) New Optimization Package for Spark

On the Databricks blog, Aaron Staple announces availability of Spark TFOCS, an optimization package based on the eponymous Matlab package.  (TFOCS=Templates for First Order Conic Solvers.)

(7) WSO2 Delivers IoT App on Spark 

IoT middleware vendor WSO2 announces Release 3.0 of its open source Data Analytics Server (DAS) platform.   DAS collects data streams and applies batch, real-tim or interactive analytics; predictive analytics are in the roadmap.  For streaming data sources, DAS supports java agents, javascript clients and 100+ connectors.  The software runs on Spark and Lucene.

(8) Hortonworks: We Aren’t Irrelevant

On the Hortonworks blog, Vinay Shukla and Ram Sriharsha tout Hortonworks’ contributions to Spark, including ORC support, an Ambari stack definition for Spark, tighter integration between Hive and Spark, minor enhancements to ML and user-facing documentation.  Looking at the roadmap, they discuss Magellan for geospatial and Zeppelin notebooks. (h/t Hadoop Weekly).

(9) Apache Drill Delivers Fast SQL-on-Laptop

On the MapR blog, Mitsutoshi Kiuchi offers a case study in how to run a silly benchmark.

Comparing the functionality of Drill and Spark SQL, Kiuchi argues that Drill “supports” NoSQL databases but Spark does not, relegating Spark’s packages to a footnote.  “Support” is a loaded word with open source software; technically, nothing is supported unless you pay for it, in which case the scope of support is negotiated as part of the SLA.  It’s also worth noting that MongoDB developed Spark’s interface to MongoDB (for example), which provides a certain amount of confidence.

Kiuchi does not consider other functional areas, such as security, YARN support, query fault tolerance, the user interface, metastore management and view support, where Drill comes up short.

In a previously published performance test of five SQL engines, Spark successfully ran nine out of eleven queries, while Drill ran eight out of ten.  On the eight queries both engines ran, Drill was slightly faster on six.  For this benchmark, Kiuchi runs three queries on his laptop with a tiny dataset.

As a general rule, one should ignore SQL-on-Hadoop benchmarks unless they run industry standard queries (e.g. TPC) with large datasets in a distributed configuration.

Big Analytics Roundup (November 2, 2015)

Spark Summit Europe, Oracle Open World and IBM Insights all met last week, as did Cloudera’s Wrangle conference for data scientists.

But in the really important news, KC beats the Mets to take the Series.

Top news from the Spark Summit is Typesafe’s announcement of Spark support, plus some insight into what’s coming in Spark 1.6.  I will publish a separate roundup for the Spark Summit next week  when presentations are available.

Nine stories this week:

(1) Typesafe Announces Spark Support

Typesafe, the commercial venture behind Scala and Akka, announces commercial support for Apache Spark.   Planned service offerings include an offer of one day business hour response to questions for projects in development.  For production, SLAs range from 4 hour turnaround during business hours up to 24/7 with one hour turnaround.

(2) More Funding for Alteryx

The New York Times reports that Alteryx has landed an $85 million “C” round, led by Iconiq Capital.  That makes a total of $163 million in four rounds for the company.

(3) Oracle Adds Spark to Cloud

At Oracle Open World, Oracle announces Oracle Cloud Platform for Big Data, a PaaS offering;  Dave Ramel covers the story.   Key new bits include automated ingestion, preparation, repair, enrichment and governance, all built in Spark; and a DBaaS offering with Hadoop, Spark and NoSQL data services.

(4) IBM Adds Spark Support to Analytics Server

Full story here.  Great news for those who want to use the high-end version of the second most popular data mining workbench with the third and fourth most popular Hadoop distributions.

(5) Ned Explains Zeppelin

Ned’s Blog provides a nice Zeppelin walk-through, noting the UI’s rich list of language interpreters, which currently includesL HiveQL, Spark, Flink, Postgres, HAWQ, Tajo, AngularJS, Cassandra, Ignite, Phoenix, Geode, Kylin and Lens.

(6) IIT and ANL Deliver BSP with ZHT

Researchers from the Illinois Institute of Technology, Argonne Labs and Hortonworks report that they have implemented a graph processing system based on Bulk Synchronous Processing on ZHT, a distributed key-value store.   Nicole Hemsoth reports.   The new engine, called Pregelix, when benchmarked against Giraph, GraphLab, GraphX and Hama, outshines them all.

(7) Wrangle 2015 Meets in SFO

Cloudera’s Justin Kestelyn summarizes the event, which hosted data science teams from the likes of Uber, Facebook and Airbnb.  Tony Baer offers the trite perspective that data science is about people.

(8) MapR Offers Free Spark Training

MapR announces availability of its first free Apache Spark course as part of its Hadoop On-Demand Training program.  No word on quality, but it’s hard to beat the price.

(9) Cloudera Pushes HUE for Spark

On the Cloudera Engineering blog, Justin Kestelyn explains how to use HUE’s notebook app with SQL and Spark.

Big Analytics Roundup (October 26, 2015)

Fourteen stories this week, beginning with an announcement from IBM.  This week, IBM celebrates 14 straight quarters of declining revenue at its IBM Insight conference, appropriately enough at the Mandalay Bay in Vegas, where the restaurants are overhyped and overpriced.

Meanwhile, the first Spark Summit Europe meets in Amsterdam, in the far more interesting setting of the Beurs van Berlage.  There will be a live stream on Wednesday and Thursday — details here.  Sadly, I can’t make this one — the first Spark Summit I’ve missed — but am looking forward to the live stream.

(1) IBM Announces Spark on Bluemix

At its IBM Insight beauty show, IBM announces availability of its Apache Spark cloud service.  Actually, IBM announced it back in July, but that was a public beta.   On ZDNet, Andrew Brust gushes, noting that IBM has DB2, Watson, Netezza, Cognos, TM1, SPSS, Informix and Cloudant in its portfolio.  He fails to note that of those products, exactly one — Cloudant — actually interfaces with Spark.

There were rumors that IBM would have an exciting announcement about Spark at this show, but if this is it — yawn.  Looking at IBM’s “Spark in the cloud” offering, I don’t see anything that sets it apart from other available offerings unless you have a Blue fetish.

Update: Rod Reicks of IBM writes to note that IBM’s new release of SPSS Analytics Server runs processes in Spark.  For the uninitiated, Analytics Server is a product you license from IBM that enables SPSS Modeler user to run selected operations in Hadoop.  Previous versions ran through MapReduce only.  Reicks claims that the latest version runs through Spark when available.

I say “claims” because there is no reference to this feature in IBM’s Release Notes, Installation Guide or User’s Guide.  Spark is mentioned deep in the Administrator Guide, under Troubleshooting.  So the good news is that if the product fails, IBM has some tips — one of which should be “Install Spark.”

You’d think that with IBM’s armies of people they could at least find someone to write documentation.

(2) Mahout Book FAIL

Packt announces a book on Clustering with Mahout with an entire chapter devoted to Canopy Clustering, which the Mahout team just deprecated.

(3) Concurrent Adds Spark Support

Concurrent announces Release 2.0 of Driven, its oddly-named performance management software, which now includes support for Apache Spark.

(4) Flink Founder Touts Streaming Analytics

At Big Data Spain, Data Artisans co-founder Kostas Tzoumas argues that streaming is the basis for all analytics, which is a bit over the top: as they say, if all you have is a hammer, the world looks like a nail.  Still, his deck is a nice intro to Flink, which has made some progress this year.

(5) AtScale Announces Release 3.0

AtScale, one of the more interesting startups in the BI space, delivers Release 3.0 of its OLAP-on Hadoop platform.  Rather than introducing a new user interface into the mix, AtScale makes it possible for BI users to work with Hadoop tables without jumping back and forth to programming tools.  The product currently supports Tableau, Excel, Qlik, Spotfire, MicroStrategy and JasperSoft, and runs on CDH, HDP or MapR with Impala, Spark SQL or Hive on Tez.  The new release includes enhanced role-based security, including Kerberos, Username/Password or LDAP.

(6) Neo: Graphs are Eating the World

Graph database leader Neo announces immediate availability of Neo4j 2.3, which includes what it calls “intelligent applications at scale” and Docker support.  Exactly what Neo means by “intelligence applications at scale” means is unclear, but if Neo is claiming that you no longer have to dump a graph into Spark to run a PageRank, I’ll believe it when I see it.

(7) New Notebook Sharing for Databricks 

Databricks announces new notebook sharing capabilities for its eponymous product.  On the Databricks blog, Denise Li and Dave Wang explain.

(8) Teradata: Blah, Blah, Blah, IoT, Blah, Blah Blah

At its annual user conference, Teradata announces that it’s heard about IoT.    Teradata also announces that it will make Aster available on Hadoop, which would have been interesting in 2012.  Aster, for the uninitiated, includes a SQL on MapReduce engine, which is rendered obsolete by fast SQL engines like Presto, which Teradata has just embraced.

(9) Flink Forward Redux

As I noted last week, the first Flink Forward conference met in Berlin two weeks ago.  William Benton records his impressions.

Presentations are here.  Some highlights:

  • Dongwon Kim benchmarks Flink against MR, MR on Tez and Spark.  Flink wins.
  • Kostas Tzoumas outlines the Flink development roadmap through Release 1.0.
  • Martin Junghanns explains graph analytics with Flink.
  • Anwar Rizal demonstrates streaming decision trees with Flink.

Henning Kropp offers resources for diving deeply into Flink.

(10) Pyramid Analytics Lands New Funding

Amsterdam-based BI startup Pyramid Analytics announces a $30 million “B” round to help it try to explain why we need more BI software.

(11) Harte Hanks Switches from CDH to MapR

John Leonard explains why Harte Hanks switched from Cloudera to MapR.  Most likely explanation: they were able to cut a cheaper deal with MapR.

(12) Audience Modeling with Spark

Guest posting on the Databricks blog, Eugene Zhulenev explains audience modeling with Spark ML pipelines.

(13) New Functions in Drill

On the MapR blog, Neeraja Rentachintala describes new capabilities in Drill Release 1.2, including SQL window functions.

(14) Integrating Spark and Redshift

“Redshift is where data goes to die.”  — Rob Ferguson, Spark Summit East

On the Databricks blog, Sameer Wadkar of Axiomine explains how to use the spark-redshift package, first introduced in March of this year and now in version 0.5.2.  So you can yank your data out of Redshift and do something with it. (h/t Hadoop Weekly)

Strata + Hadoop World 2014

A sellout crowd of 5,500 met at the Javits Center in New York last week for the 2014 Strata + Hadoop World conference.  There were three major themes:

Big Data in Action.   In his keynote address, Mike Olson of Cloudera noted the shift from talking about “geeky projects like Pig, Sqoop and Oozie” to talking about applications, such as fraud detection, product design and agriculture.   An entire track in the conference featured success stories from companies such as Goldman Sachs, Transamerica, American Express, L.L. Bean, FICO and Kaiser Permanente.

Symbiosis of Analytics and Big Data.  Paul Zikopoulos of IBM observed that “Big Data without analytics is just a bunch of data.”   Zikopoulos drew an analogy to the mining industry, which uses advanced technology to extract trace amounts of valuable material from large quantities of low-grade ore; in Big Data, we use advanced analytics to extract useful insight from large quantities of low-value per byte data.  Conference sessions reflected the critical role analytic technology plays in the Big Data value chain.

Spark has arrived.  The 2013 conference included two sessions about Spark; this year, thirteen sessions featured Spark, including the sold-out full day Spark Camp.  Moreover, vendors such as ClearStory Data and Platfora openly touted Spark integration, in the belief that this capability resonates with buyers.  Other conference sponsors recently certified on Spark include Pentaho, Skytree, Tableau, Talend and Trifacta; and MapR announced a project to deliver Apache Drill on Spark.

Among the notable Spark sessions:

  • Sean Owen of Cloudera delivered an excellent demonstration of Spark’s MLLib machine learning library for anomaly detection
  • Michael Armbrust of Databricks presented on Spark SQL and its uses as both a query language and a general framework for working with structured data

Advancing a theme he introduced last year, Olson speculated in his keynote that Hadoop will “disappear” this year because enterprises increasingly view Hadoop in the context of an overall data management strategy.  He cited the recent Teradata-Cloudera partnership as evidence of this trend.  That announcement is certainly significant, but it demonstrates the opposite of Olson’s high-level point; Teradata abandoned its exclusive relationship with Hortonworks because many of its customers prefer Cloudera to HDP, and they aren’t willing to switch simply because TD sells a “Unified Data Architecture.”  Most enterprises still make decisions about Hadoop separately from decisions about other elements in the warehousing mix, and there are currently few good reasons to change that behavior.

Rana El Kaliouby of Affectiva presented an excellent example of analytics and Big Data working together.  Affectiva uses streaming facial recognition to capture millions of data points as consumers react to content, and uses machine learning algorithms to draw insight from the data.  By mapping the streaming data to emotional states, they can identify what content resonates with consumers.

Several of the sponsored topics in the plenary sessions were quite good, including presentations by MapR, Intel, ClearStory and IBM; others were about what one expects from sponsored presentations.

There were also a number of entertaining presentations that had little to do with Big Data.  Shankar Vedantum of NPR, for example, spent ten minutes sermonizing about the propensity of the human mind to select facts that confirm existing biases, and selectively used facts to illustrate his point.  He should have paid attention in “Research Methods 101”; at best, his point seemed trite, like telling a convention of nutritionists that “dieting is hard.”

Eli Collins of Cloudera delivered the obligatory “ethics and Big Data” piece, in which he argued that we should “use data for good”; his piece was immediately followed, ironically, by a presentation about using facial recognition to get people to buy more candy.  Everyone agrees that doing good is a good thing, but a technologist delivering a sermon is as silly as a Baptist minister lecturing on Oozie.

Smart Money: YTD Funding for Analytics Doubles vs. 2013

Funding for analytics startups continued at a torrid pace in the second quarter; 140 announced investments totaled $1.03 billion, compared to 137 investments totaling $657 million in the second quarter of 2013.  Year to date, investment in analytic ventures is up 97% versus the first two quarters of last year.  (All data sourced from Crunchbase).

Screen Shot 2014-07-13 at 4.06.49 PM

 

Eleven mezzanine rounds raised a total of $412m, 40% of the total amount invested in the sector.  There were two private equity investments:

  • Attensity raised $90m on the strength of its natural language processing, text mining and sentiment analysis solution.
  • Hadoop distributor MapR raised $80m from Google Capital, Qualcomm Ventures, Redpoint Ventures, New Enterprise Associates, Mayfield Fund and Lightspeed Venture Partners.  MapR also received a $30m loan from Silicon Valley Bank.

In other notable mezzanine rounds:

  • BPM solution vendor Tidemark raised $32m in an E round funded by Tenaya Capital, Redpoint Ventures, Andreeson Horowitz, Greylock Partners and Silicon Valley Bank.
  • Social media platform Sprinklr landed $40m in D round funding from Intel Capital, Battery Ventures and Iconiq Capital.
  • BI vendor SiSense raised $30m in a C round from Opus Capital, Genesis Partners, Battery Ventures and DFJ Growth.
  • HR solutions provider Visier raised $25.5m in a C round from Summit Partners, Foundation Capital and Adams Street Partners.
  • Predictive marketing platform provider AgilOne received $25m in C round funding from Sequoia Capital, Four Rivers Group, Next World Capital, Tenaya Capital and Mayfield Fund.

Nineteen “B” rounds raised $282m.  Top recipients include:

  • Credit scoring specialist Kreditech raised $40m from Point Nine Capital, Blumberg Capital and Varde Partners.
  • Data platform Krux landed $35m in a round led by SAP Capital.
  • Databricks capitalized on interest in Apache Spark by raising $33m from New Enterprise Associates and Andreeson Horowitz.
  • Social listening vendor Brandwatch raised $22m from Nauta Capital and Highland Capital Partners.
  • Context Relevant, a firm that offers diverse horizontal solutions with embedded analytics, landed $21m in funding from a group led by Formation 8.

Nineteen “A” rounds raised $126m.  Notable recipients include:

  • Evidence-based medicine provider Orange Health Solutions disclosed an equity investment of $22.5m from unknown investors.
  • 6Sense, developer of an eponymous sales and marketing intelligence platform, raised $12m from Battery Ventures, Venrock and Silicon Valley Bank.
  • Health analytics platform vendor Aver Informatics landed $8.5 from GE Ventures and Drive Capital.

Forty pre-venture rounds — Seed, Angel, Grants and Crowdsourcing — raised $30m.  The largest of these, at $2.65m, went to Farmeron, developer of a cloud-based analytics app for farm business management.

For this analysis, I classify firms as analytics providers if the Crunchbase company_category_list field contains the word “Analytics”.  This is a broad definition that includes:

  • Analytic data platforms (MapR)
  • Analytic tools providers (RapidMiner)
  • Analytic service providers (Palantir)
  • Business solutions with embedded analytics (AgilOne)

Of course, the quality of this classification depends on the quality of the data in Crunchbase, which is a work in progress.

Spark Summit 2014 Roundup

Key highlights from the 2014 Spark Summit:

  • Spark is the single most active project in the Hadoop ecosystem
  • Among Hadoop distributors, Cloudera and MapR are clear leaders with Spark
  • SAP now offers a certified Spark distribution and integration with HANA
  • Datastax has delivered a Cassandra connector for Spark
  • Databricks plans to offer a cloud service for Spark
  • Spark SQL will absorb the Shark project for fast SQL
  • Cloudera, MapR, IBM and Intel plan to port Hive to Spark
  • Spark MLLIb will double its supported algorithms in the next release

Last December, the 2013 Spark Summit pulled 450 attendees for a two-day event.  Six months later, the Spark Summit 2014 sold out at more than a thousand seats for a three-day affair.

It’s always ironic when manual registration at a tech conference produces long lines:

SS4

Databricks CTO Matei Zaharia kicked off the keynotes with his recap of Spark progress since the last summit.   Zaharia enumerated Spark’s two big goals: a unified platform for Big Data applications combined with a standard library for analytics.  CEO Ion Stoica followed with a Databricks update, including an announcement of the SAP alliance and an impressive demo of Databricks Cloud, currently in private beta.  Separately, Databricks announced $33 million in Series B funding.

Spark Release Manager Patrick Wendell delivered an overview of planned development over the next several releases.   Wendell confirmed Spark’s commitment to stable APIs; patches that break the API fail the build.   The project will deliver dot releases every three months beginning in August 2014, and maintenance releases as needed.   Development focus in the near future will be in the libraries:

  • Spark SQL: optimization, extensions (toward SQL 92), integration (NoSQL, RDBMS), incorporation of Shark
  • MLLib : rapid expansion of algorithms (including descriptive statistics, NMF. Sparse SVM, LDA), tighter integration with R
  • Streaming: new data sources, tighter Flume integration
  • GraphX: optimizations and API stability

Mike Franklin of Berkeley’s AMPLab summarized new developments in the Berkeley Data Analytics Stack (“BadAss”), including significant new work in genomics and energy, as well as improvements to Tachyon and MLBase.  Dave Patterson elaborated on AMPLab’s work in genomics, providing examples showing how Spark has markedly reduced both cost and runtime for genomic analysis.

Cloudera, Datastax, MapR and SAP demonstrated that the first rule of success is to show up:

  • Mike Olson of Cloudera responded to Hortonworks’ snark by confirming Cloudera’s commitment to Impala as well as Hive on Spark.  Olson drew a round of applause when he invited Horton to join the Hive on Spark consortium.
  • Martin van Ryswyk of Datastax announced immediate availability of a Cassandra driver for Spark, a component that exposes Cassandra tables as Spark RDDs.  Datastax continues to work on tighter integration with Spark, including support for Spark SQL, Streaming and GraphX libraries.  In the breakouts, Datastax delivered a deeper briefing on integration with Spark Streaming.
  • M.C. Srivas of MapR highlighted Spark benefits realized by four MapR customers, including Cisco, a health insurer, an ad platform and a pharma company.  MapR continues to claim support for Shark as a differentiator, a point mooted by the announcement that Spark SQL will soon absorb Shark.
  • Aiaz Kazi of SAP seemed pleased that most of the audience has heard of SAP HANA, and delivered an overview of SAP’s integration with Spark.

IBM wasted a Platinum sponsorship by sending some engineers to talk about “System T”, IBM’s text mining application, with passing references to Spark.  Although IBM Infosphere BigInsights is a certified Spark distribution, IBM appears uncommitted to Spark; the lack of executive presence at the Summit stood out in sharp contrast to Cloudera and MapR.

Silver sponsors Hortonworks and Pivotal hosted tables in the vendor area, but did not present anything.

Neuroscientist Jeremy Freeman, back by popular demand from the 2013 Spark Summit, presented latest developments in his team’s research into animal brains using Spark as an analytics platform.  Freeman’s presentations are among the best demonstrations of applied analytics that I’ve seen in any forum.

A number of vendors in the Spark ecosystem delivered presentations showing how their applications leverage Spark, including:

The most significant change from the 2013 Spark Summit is the number of reported production users for Spark.  While the December conference focused on Spark’s potential, I counted several dozen production users among the presentations I attended.

Also among the sellout crowd: a SAS executive checking to see if there is anything to this open source and vendor-neutral stuff.  Apparently, he did not get Jim Goodnight’s message that “Big Data is hype manufactured by media“.

 

Apache Spark for Big Analytics (Updated for Spark Summit and Release 1.0.1)

Updated and bumped July 10, 2014.

For a powerpoint version on Slideshare, go here.

Introduction

Apache Spark is an open source distributed computing framework for advanced analytics in Hadoop.  Originally developed as a research project at UC Berkeley’s AMPLab, the project achieved incubator status in Apache in June 2013 and top-level status in February 2014.  According to one analyst, Apache Spark is among the five key Big Data technologies, together with cloud, sensors, AI and quantum computing.

Organizations seeking to implement advanced analytics in Hadoop face two key challenges.  First, MapReduce 1.0 must persist intermediate results to disk after each pass through the data; since most advanced analytics tasks require multiple passes through the data, this requirement adds latency to the process.

A second key challenge is the plethora of analytic point solutions in Hadoop.  These include, among others, Mahout for machine learning; Giraph, and GraphLab for graph analytics; Storm and S4 for streaming; or HiveImpala and Stinger for interactive queries.  Multiple independently developed analytics projects add complexity to the solution; they pose support and integration challenges.

Spark directly addresses these challenges.  It supports distributed in-memory processing, so developers can write iterative algorithms without writing out a result set after each pass through the data.  This enables true high performance advanced analytics; for techniques like logistic regression, project sponsors report runtimes in Spark 100X faster than what they are able to achieve with MapReduce.

Second, Spark offers an integrated framework for analytics, including:

A closely related project, Shark, supports fast queries in Hadoop.  Shark runs on Spark and the two projects share a common heritage, but Shark is not currently included in the Apache Spark project.  The Spark project expects to absorb Shark into Spark SQL as of Release 1.1 in August 2014.

Spark’s core is an abstraction layer called Resilient Distributed Datasets, or RDDs.  RDDs are read-only partitioned collections of records created through deterministic operations on stable data or other RDDs.  RDDs include information about data lineage together with instructions for data transformation and (optional) instructions for persistence.  They are designed to be fault tolerant, so that if an operation fails it can be reconstructed.

For data sources, Spark works with any file stored in HDFS, or any other storage system supported by Hadoop (including local file systems, Amazon S3, Hypertable and HBase).  Hadoop supports text files, SequenceFiles and any other Hadoop InputFormat.  Through Spark SQL, the Spark user can import relational data from Hive tables and Parquet files.

Analytic Features

Spark’s machine learning library, MLLib, is rapidly growing.   In Release 1.0.0 (the latest release) it includes:

  • Linear regression
  • Logistic regression
  • k-means clustering
  • Support vector machines
  • Alternating least squares (for collaborative filtering)
  • Decision trees for classification and regression
  • Naive Bayes classifier
  • Distributed matrix algorithms (including Singular Value Decomposition and Principal Components Analysis)
  • Model evaluation functions
  • L-BFGS optimization primitive

Linear regression, logistic regression and support vector machines all use a gradient descent optimization algorithm, with options for L1 and L2 regularization.  MLLib is part of a larger machine learning project (MLBase), which includes an API for feature extraction and an optimizer (currently in development with planned release in 2014).

In March, the Apache Mahout project announced that it will shift development from MapReduce to Spark.  Mahout no longer accepts projects built on MapReduce; future projects leverage a DSL for linear algebra implemented on Spark.  The Mahout team will maintain existing MapReduce projects.  There is as yet no announced roadmap to migrate existing projects from MapReduce to Spark.

Spark SQL, currently in Alpha release, supports SQL, HiveQL, and Scala. The foundation of Spark SQL is a type of RDD, SchemaRDD, an object similar to a table in a relational database. SchemaRDDs can be created from an existing RDD, Parquet file, a JSON dataset, or by running HiveQL against data stored in Apache Hive.

GraphX, Spark’s graph engine, combines the advantages of data-parallel and graph-parallel systems by efficiently expressing graph computation within the Spark framework.  It enables users to interactively load, transform, and compute on massive graphs.  Project sponsors report performance comparable to Apache Giraph, but in a fault tolerant environment that is readily integrated with other advanced analytics.

Spark Streaming offers an additional abstraction called discretized streams, or DStreams.  DStreams are a continuous sequence of RDDs representing a stream of data.  The user creates DStreams from live incoming data or by transforming other DStreams.  Spark receives data, divides it into batches, then replicates the batches for fault tolerance and persists them in memory where they are available for mathematical operations.

Currently, Spark supports programming interfaces for Scala, Java and Python;  MLLib algorithms support sparse feature vectors in all three languages.  For R users, Berkeley’s AMPLab released a developer preview of SparkR in January 2014

There is an active and growing developer community for Spark: 83 developers contributed to Release 0.9, and 117 developers contributed to Release 1.0.0.  In the past six months, developers contributed more commits to Spark than to all of the other Apache analytics projects combined.   In 2013, the Spark project published seven double-dot releases, including Spark 0.8.1 published on December 19; this release included YARN 2.2 support, high availability mode for cluster management, performance optimizations and improvements to the machine learning library and Python interface.  So far in 2014, the Spark team has released 0.9.0 in February; 0.9.1, a maintenance release, in April; and 1.0.0 in May.

Release 0.9 includes Scala 2.10 support, a configuration library, improvements to Spark Streaming, the Alpha release for GraphX, enhancements to MLLib and many other enhancements).  Release 1.0.0 features API stability, integration with YARN security, operational and packaging improvements, the Alpha release of Spark SQL, enhancements to MLLib, GraphX and Streaming, extended Java and Python support, improved documentation and many other enhancements.

Distribution

Spark is now available in every major Hadoop distribution.  Cloudera announced immediate support for Spark in February 2014; Cloudera partners with Databricks.  (For more on Cloudera’s support for Spark, go here).  In April, MapR announced that it will distribute Spark; Hortonworks and Pivotal followed in May.

Hortonworks’ approach to Spark focuses more narrowly on its machine learning capabilities, as the firm continues to promote Storm for streaming analytics and Hive for SQL.

IBM’s commitment to Spark is unclear.  While BigInsights is a certified Spark distribution and IBM was a Platinum sponsor of the 2014 Spark Summit, there are no references to Spark in BigInsights marketing and technical materials.

In May, NoSQL database vendor Datastax announced plans to integrate Apache Cassandra with the Spark core engine.  Datastax will partner with Databricks on this project; availability expected summer 2014.

At the 2014 Spark Summit, SAP announced its support for Spark.  SAP offers what it characterizes as a “smart integration”, which appears to represent Spark objects in HANA as virtual tables.

On June 26, Databricks announced its Certified Spark Distribution program, which recognizes vendors committed to supporting the Spark ecosystem.   The first five vendors certified under this program are Datastax, Hortonworks, IBM, Oracle and Pivotal.

At the 2014 Spark Summit, Cloudera, Dell and Intel announced plans to deliver a Spark appliance.

Ecosystem

In April, Databricks announced that it licensed the Simba ODBC engine, enabling BI platforms to interface with Spark.

Databricks offers a certification program for Spark; participants currently include:

In May, Databricks and Concurrent Inc announced a strategic partnership.  Concurrent plans to add Spark support to its Cascading development environment for Hadoop.

Community

In December, the first Spark Summit attracted more than 450 participants from more than 180 companies.  Presentations covered a range of applications such as neuroscienceaudience expansionreal-time network optimization and real-time data center management, together with a range of technical topics. (To see the presentations, search YouTube for ‘Spark Summit 2013’, or go here).

The 2014 Spark Summit was be held June 30 through July 2 in San Francisco.  The event sold out at more than a thousand participants.  For a summary, see this post.

There is a rapidly growing list of Spark Meetups, including:

Now available for pre-order on Amazon:

Finally, this series of videos provides some good basic knowledge about Spark.