Disruption: It’s All About the Business Model

This post is an excerpt adapted from my book, Disruptive Analytics, available soon from Apress and Amazon. (Note: under my contract with Apress I am legally obligated to link to their site, but it’s not yet possible to order the book there. Use the Amazon link if you want the book.)

The analytics business is booming. Technology consultant IDC estimates total spending for analytic services, software and hardware exceeded $120 billion in 2015; through 2019, IDC forecasts that spending will increase to $187 billion, an 11% compound annual growth rate.

Powerful forces are at work in the economy today:

  • Digital transformation of the economy and rapidly declining storage costs combine to create a flood of data.
  • The number of data sources is exploding. Data sources are everywhere: on-premises, in the cloud, in consumers’ pockets, in vehicles, in RFID chips, and so forth.
  • The “long march” of Moore’s Law: cheap computing power makes machine learning and deep learning techniques practical.

So, if analytics is such a hot field, why are the industry leaders struggling?

  • Oracle’s cloud revenue growth fails to offset declining software and hardware sales.
  • SAP’s cloud revenue grows, but total software revenue is flat.
  • IBM reports seventeen straight quarters of declining revenue. Mass layoffs
  • Microsoft underperforms analysts’ expectations despite 120% growth in Azure cloud revenue.
  • Predictive analytics leader SAS reports five years of low single-digit revenue growth; Executive Vice President and Chief Marketing Officer departs.
  • Data warehousing leader Teradata shuffles its leadership team after four years of declining product revenue.

Product quality is not the problem. Each company offers products that industry analysts rate highly:

  • Forrester and Gartner recognize IBM, SAS, SAP and Oracle as leaders in data quality tools.
  • Gartner rates Oracle, SAP, IBM, Microsoft and Teradata as leaders in data warehousing.
  • Forrester rates Microsoft, SAP, SAS, and Oracle as leaders in agile business intelligence.
  • Gartner recognizes SAS and IBM as leaders in Advanced Analytics.

The answer, in a word, is disruption. Clayton Christensen of the Harvard Business School outlined the theory of disruptive innovation in 1997. Summarizing the argument briefly:

  • Industries consist of value networks, collections of suppliers, channels, and buyers linked by relationships.
  • Innovations disrupt industries when they create a new value network.
  • Not all innovations are disruptive. Many are introduced by market leaders to sustain a competitive position.
  • Disruptive innovations tend to be introduced by outsiders.
  • Purely technological innovation is not disruptive; what matters is the business model enabled by the new technology.

For a more detailed exposition of the theory, read Christensen’s book.

Christensen identified two forms of disruption. Low-end disruption occurs when industry leaders enhance products faster than customers can assimilate the enhancements; the disruptor enters the market with a “good enough” product and a better value proposition. The disruptor’s innovation makes it possible to serve customers at a lower cost than the industry leaders can deliver.

New market disruption takes place when the disruptor innovates in ways enabling it to serve customers that are not served by the industry leaders.

Technology alone does not disrupt industries; incumbents can and do innovate. New business models enabled by new technology are the cutting edge of disruption. Frequently, incumbents cannot respond effectively to new business models; this is partly due to “blinders” caused by changing value networks, and partly out of fear of cannibalizing existing business arrangements. Two business models, in particular, are disrupting the business analytics world today:

  • Open source software business models offer an increasingly attractive alternative to commercial software licensing. The Hadoop ecosystem displaces conventional data warehousing; R and Python displace commercial software for advanced analytics.
  • The elastic business model made possible by cloud computing undercuts conventional software licensing. When customers pay only for what they use, they pay a lot less.

Disruption does not mean that leading companies like Oracle, IBM and SAS will go out of business. Blockbuster may be the poster child for disrupted businesses, but most cases are less dire; for the business analytics leaders, disruption means they will struggle to grow. Slow growth is less benign than it sounds. As McKinsey notes, the rule today is “Grow or Go”: companies that cannot define a credible growth strategy will be acquired by other companies or by private equity.

The alternative to revenue growth is increasing profitability. But when revenue is flat or declining, that usually means job cuts.

job-cuts
Disruption looks like this.

Consider what happened to Teradata. Late in 2012, the company started missing sales targets; in early 2013, it stunned investors by reporting an absolute decline in sales. Management offered excuses; Wall Street punished the stock, driving it down by half in the face of a bull market for tech stocks.

Teradata’s leadership continued to miss sales and earnings targets; Wall Street drove the stock price down to a fraction of its 2012 peak. While it is tempting to blame the problem on poor leadership, Teradata’s persistent failure to accurately forecast its sales and earnings is a clear sign that its leadership no longer understood the value networks in which they operated. The world had changed; the value networks created in Teradata’s rise to leadership no longer existed; the mental models managers used to understand the market no longer worked.

There are two distinct types of disruption. The first is disruptive innovation within the analytics value chain. Here are two recent examples:

Hadoop. The Hadoop ecosystem disrupts the data warehousing industry from below. Hadoop does not do everything a relational database can do, but it does just enough to offer an attractive value proposition for the right use cases. When first introduced, Hadoop’s capabilities were very limited compared to data warehouse appliances. But Hadoop’s flexibility and low cost were highly attractive for applications that did not need the performance and features of a data warehouse appliance. While established vendors struggle to maintain flat and declining revenue, companies that offer solutions built on Hadoop grow at double-digit rates.

Tableau. Tableau virtually created the market for agile, self-service discovery. The charting and visualization features in Tableau are available in mainstream business intelligence tools. But while business intelligence vendors target the IT organization and continually add complexity to their product, Tableau targets the end user with a simple, easy to use and versatile tool. As a result, Tableau has increased its revenue tenfold in five years, leapfrogging over many other BI vendors.

Disruption within the analytics value chain is pertinent for readers who plan to invest in analytics technology for their organization. Technologies at risk of disruption are risky investments; they may have abbreviated useful lives, and their suppliers may suffer from business disruption. Taking a “wait-and-see” attitude towards disrupted technologies makes good sense, if only because prices will likely decline in the future.

The second type is disruption by innovations in analytics. Examples of disruption by analytics are harder to find, but they do exist:

Credit Scoring. General-purpose credit scoring introduced by Fair, Isaac and Co. in 1987 virtually created a national market in credit cards.  Previously, banks issued credit cards to their local customers, with whom they had an established relationship. Uniform credit scoring enabled a few large issuers to identify creditworthy clients in the general population, without a prior relationship.

Algorithmic Trading. When the U.S. Securities and Exchange Commission authorized electronic trading in regulated securities in 1998, market participants quickly moved to develop algorithms that could arbitrage between markets, arbitrage between indexes and the underlying stocks and exploit other short-term opportunities. Traders that most effectively deployed machine learning for electronic trading grew at the expense of other traders.

For startups and analytics practitioners, disruption by analytics is essential. Startups must disrupt their industries if they want to succeed. Using analytics to differentiate a product is a way to create a disruptive business model or to create new markets.

There is a common theme across the four examples: the business model enabled by the technology and not the technology itself drives the disruption. Hadoop and Tableau do less than the legacy products they compete against; what they do, however, is sufficient for a class of use cases, for which they provide a better value proposition. Credit scoring and algorithmic trading created fundamentally new ways to lend and invest; while these applications attracted technological innovations as they expanded, it was the new business models they created that disrupted the lending and investing industries.

To illustrate the importance of the business model, consider the case of columnar serialization, a significant innovation in data warehousing that did not disrupt the industry. In 2005, Vertica introduced a commercial columnar database, a technology that is well-suited to high-performance analytics (as we explain in Chapter Two of Disruptive Analytics). Vertica successfully built a customer base, but did not create a unique business model; by 2010 the leading data warehouse vendors had introduced columnar serialization into their products. HP acquired Vertica in 2011 for about $250 million, a price well below the $1.7 billion IBM paid for Netezza, a competing data warehouse appliance vendor.

Here are some takeaways for the reader to consider.

First, if you want to invest in new business analytics technology, ask yourself:

  • Are we paying for what we use, or for what we might use?
  • What particular value do commercial software options offer over open source alternatives?

Second, if you want to use analytics to create a disruptive innovation, ask yourself:

  • What new business model does this support?
  • Can we disrupt incumbents from below with a better value proposition?
  • Can we reach new markets and new customers who are underserved by existing value networks?

There is one additional takeaway: nobody ever disrupted anything by managing data. Keep that in mind the next time a data warehousing vendor tries to tell you that their Big Box is a “strategic” investment. We’ll explore that in another excerpt from the book.

Spark is Too Big to Fail

Reacting to growing interest in Apache Spark, there is a developing contrarian meme:

  • David Ramel asks: are Spark and Hadoop friends or foes?
  • Jack Vaughan compares Spark to the PDP-11, dismisses it as “just processing.”
  • Doug Henschen praises Spark, pans Databricks
  • Nicole Laskowski complains that Spark Summit East “felt like a Databricks show.”
  • Andrew Oliver thinks Spark needs to grow up
  • Andrew Brust worries that vendors are ahead of customers on Spark
  • IBM’s James Kobelius characterizes Spark as “the shiny new thing”
  • Gartner’s Nick Heudecker asserts that Spark is “not enterprise ready”

Spark skepticism falls into three broad categories:

  • Hadoop Purism: Spark deviates from the MapReduce/HDFS framework, and some people aren’t happy about that
  • Backseat Driving: Some analysts argue that Spark is great but Databricks, the commercial venture behind Spark, should do X, Y or Z
  • FUD: Spark’s competitors — commercial and open source — plant “issues” and “concerns” about Spark with industry analysts

Let’s examine each in turn.

“Spark Competes With Hadoop”

Spark does not compete with Hadoop; it competes with MapReduce.  Hadoop is an ecosystem of projects; there are a few components included in all commercial distributions (e.g. Hive, Pig, Hbase), but these  aren’t used at every site.  The ability to mix and match components is a strength for Hadoop.

Some software, like Spark, can run co-located in a Hadoop cluster or on clustered machines outside of Hadoop.  This should not surprise anyone; clustering and distributed computing existed before Hadoop.  Why does it matter if a software component can run both ways?  Users and use cases will drive implementation, and if Spark works better with Cassandra than with HDFS, or if a Spark user does not need the other Hadoop bits, so be it.

While there are reports of organizations that have abandoned MapReduce, most organizations will use Spark together with MapReduce; if users are happy with existing MapReduce jobs, there is no need to rewrite them.  For new applications, however, some users will choose Spark over MapReduce for a variety of reasons; for better runtime performance, more efficient programming, more built-in features or simply because it’s the latest thing.  Isn’t competition a wonderful thing?

Organizations using standalone instances of Spark likely never considered using MapReduce for the application in question.  For these use cases, Spark competes with SAS, Skytree, H2O, Graphlab or some other machine learning software.

Databricks Envy

Sniping at Databricks is equally unwarranted. (Note: I’m not on the payroll.)  There are only so many ways to build a viable open source business model.   Offering a commercial product with additional bits is one way to do so; that is how Cloudera and MapR operate.  Databricks offers a hosted service for Spark with a few extra bits; if you don’t like Databricks’ offering, you can implement on-premises yourself or get Spark as a service through Amazon Web Services, BlueData, Qubole or elsewhere.

And if you really must have a notebook for Spark, try Zeppelin.

Of course, it’s true that Hortonworks open sources everything.  HDP loses $3.76 for every dollar they sell.  They hope to make it up on volume.

Databricks contributes heavily to the open source Spark project, supporting developers whose sole job is to improve Spark.  Most importantly, Databricks provides leadership and release management, which inspires confidence that Spark will not turn into a muddled mess like Mahout.

The complaint that Spark Summit East “felt like a Databricks show” is odd — one rarely hears complaints that Oracle World “feels like an Oracle show.”  There were thirty-nine presentations on the agenda at Spark Summit East, and one — Ion Stoica’s keynoter — highlighted Databricks Cloud.   In contrast, sponsored sessions accounted for a third of the sessions at the 2015 Strata + Hadoop World in Santa Clara.

“Spark Is Not Enterprise-Ready”

Some of the criticism is silly.   Andrew Oliver is shocked to discover that Release 1.0 of Databricks Cloud’s notebook, currently still in beta release, isn’t as slick as Tableau.  Also, a process he was watching timed out.  But wait!  That might be due to slow hotel wi-fi…

Meanwhile, SecurityTracker reports a major security flaw in IBM’s BigSQL.

Is Spark “enterprise ready?”  The same question could be asked about Hadoop, and conservative enterprises will answer “no” in both cases.  There is no single threshold that determines when a piece of software is “enterprise-ready”.  Use cases matter; the standard for software that will run your ATMs is not the same as the standard for software to be used for genomics research.

According to Gartner’s Heudecker, “actual adopters are mid- and late-stage startups such as Spark pureplay DataBricks, ClearData Story and Paxata, which uses Spark for data preparation. Other companies primarily use Spark to power dashboards.”  Interesting to hear Gartner dismiss the dashboard market; but enterprises are currently using Spark for more than dashboards.  A top global bank uses Spark today for Basel reporting and stress testing; if you’re not familiar with stress testing, suffice to say that a bank that gets this application wrong is in a heap of trouble.

It’s true that vendors are ahead of customers on Spark  This is hardly out of the ordinary with new technology; one could have said the same thing about Hive in 2010.  Vendors are always ahead of customers; it’s their job.

Spark is Too Big to Fail 

What are the alternatives to Spark?  Gartner’s Heudecker correctly notes that Spark excels at iterative processing, where MapReduce performance is sandbagged by its need to persist after each pass through the data.  High-performance advanced analytics must run in memory; there are commercial products available from SAS and Skytree, but for open source distributed analytics there are few alternatives to Spark.  Flink and Tez lack Spark’s analytic libraries; Impala can support SQL but lacks capabilities for machine learning, streaming analytics and graph analytics.

Whether or not Spark is fully buttoned down in Release 1.3 is irrelevant; at this point it is a settled matter that Spark is superior to MapReduce for advanced analytics applications.

I am not suggesting that Spark is free of bugs or issues.  Like every other commercial and open source software project, Spark has bugs; unlike some of the commercial products Gartner rates as “Leaders”, the Spark team is transparent about issues and fixes them quickly.   It’s also fair to say that this time next year Spark will have more features than it has today; the community of users and contributors will determine what features need to be added.

Unlike some other open source projects, Spark has strong leadership, a disciplined approach to development and an impressive release cadence.  People build software, and the people behind Spark have proven that they know what they are doing.

The list of Spark users is strong and growing.  I’ve attended every Spark Summit since the first one in 2013 and there is noticeable growth in the number and sophistication of the applications presented.  This is not hype; it is real progress by users who are accomplishing bigger and better things with Spark than they could have accomplished without it.

Spark has already achieved a level of commercial support that ensures it will live up to its promise.  Available in every commercial Hadoop distribution and with Datastax, endorsed by SAP and Oracle, it is inconceivable that these players will let Spark fail.  This is partly because reputations are at stake, and also because there are few other options for open source high-performance advanced analytics inside or outside of Hadoop.

Big Analytics Roundup (April 6, 2015)

Late posting today due to holiday travel.

In the week following Spark Summit East, a number of Spark skeptics surfaced, a sign that people take Spark seriously.

The top item of the week, though, is Tiernan Ray’s interview with Michael Stonebraker in Barrons, a must-read.

Analytic Software

Forrester published its latest “wave” for Big Data Predictive Analytics Solutions, an inaptly named report that lumps together solutions that can work with Big Data and those that cannot.  I’ll write a more detailed summary later this week.  Quick takes:  Alteryx, Oracle and RapidMiner did well, but Alpine and Microsoft clearly need to shift some of their analyst relations spending from Gartner to Forrester.

Apache Drill

Apache Drill announces Release 0.8.

Apache Spark

Analysis

In opensource.com, Jen Wike Hugar interviews key Spark contributor Reynold Xin.

Mike Vizard, in the aptly named Talkin’ Cloud, describes the high potential for Spark in the cloud.  (Though he does not mention it, more than half of respondents to a recent Typesafe survey of Spark users said they deploy it in the cloud.)

Matei Zaharia, creator of Spark and CTO of Databricks, held an Ask Me Anything last week on Reddit.  Key takeaways: no, Matei is not a musician, and yes, he likes Nutella. 

Spark has clearly reached a point of inflection when skeptical analysis emerges.  Criticism is healthy, of course, but what the skeptics all seem to share is an ignorance of machine learning and streaming applications, and the challenge of making those applications work well in MapReduce.  In other words, they all seem to misunderstand the purpose of Spark, and would do well to learn more about the platform before quibbling on the margins.

  • Professional cat herder Andrew Oliver compares Spark to Tableau and, shockingly, finds it wanting.  Also, Andrew heard people say unflattering things about Hadoop at Spark Summit East.  Who knew that Hadoop devotees are so sensitive?
  • In DataMill, Nicole Leskowski asks if Apache Spark is the next big thing in Big Data Analytics, a question that would have been timely last year.
  • In TechTarget, Jack Vaughan wonders whether Spark is just a shiny new object, while ruminating about Digital Equipment and the PDP-11.  His point will be lost on most readers.
  • Returning to ZDNet from GigaOm, Andrew Brust asks if Spark is overhyped, citing unnamed second-hand sources that tell him Spark is “not ready for prime time.”   Note to Andrew: you can download the software here.

Spark Core

Matei Zaharia celebrates Spark’s fifth birthday with a brief history.

On the Cloudera blog, Sandy Ryza concludes his series on tuning Spark jobs.

Spark Streaming

On the Databricks blog. Cody Koeninger, Davies Liu and Tathagata Das describe the new direct Kakfa API available in Spark 1.3

Databricks

Databricks announced that Timeful, a startup specializing in intelligent time management, has deployed its recommendation engine in Databricks Cloud.  Case study available here.

Hadoop Ecosystem

In Datanami, Hadoop skeptic Alex Woodie asks if Hadoop needs a reality check, observing that the leading Hadoop distributors do not make money, a trait shared by most industries at comparable points of maturity.  Woodie cites Wikibon’s Big Data revenue summary as evidence that there is little money in Hadoop, without considering the validity of Wikibon’s data (which is self-reported by the vendors and lacks consistent definitions).  Even if we accept the Wikibon data at face value, Woodie also fails to note that startup Palantir (which is totally into Hadoop) now reports more Big Data revenue than industry leader SAS.  Another unanswered question: if Hadoop is so inconsequential, why has Teradata lost half its market value since 2012?

IBM

IBM announces BigInsights 4.0 just nine months after releasing BigInsights 3.0.  BigInsights includes the usual Hadoop bits, plus:

  • BigSQL, a federation engine for SQL across relational databases and Hadoop
  • Big Sheets, a Datameer-like spreadsheet-on-Hadoop tool
  • SystemML, a home-grown machine learning library that runs in MapReduce
  • Text analytics capability
  • Big R, an interface that can push embarrassingly parallel R processing into Hadoop

Streaming and Real-Time Processing

On the O’Reilly Radar blog, Ben Lorica describes platforms and applications for processing data streams.

Big Analytics Roundup (March 30, 2015)

Lots of Spark news this week, following last week’s Sparkalanche, plus some other non-Spark news just to show that Big Analytics isn’t entirely about Spark.

Alteryx

  • In IntelligentHQ, Maria Fonseca interviews Alteryx COO George Mathew, argues that analytics is for people.  Left unanswered: who else it could be for.

Analytic Startups

  • Analytics vendor Ayasdi lands a $55 million “C” round.
  • Localytics, which specializes in analytics for mobile and web apps, secures a $35 million “D” round.

Apache Drill

  • MicroStrategy announces certification of Apache Drill with MicroStrategy Analytics Enterprise Platform.

Apache Spark

Analysis

  • IBM Big Data “evangelist” James Kobelius confirms that IBM has no idea what to do with Spark.
  • In TechRepublic, Matt Asay argues that Hadoop won’t disappear just because it’s slow, knocking over several straw men in the process.   On readwrite, he makes similar points; and on InfoWorld, he goes for the hat trick.
  • In InfoWorld, Platfora’s Peter Schlampp offers five reasons why Spark is the next big thing.

Applications

  • On the Cloudera blog, Sam Shuster of Edmunds.com describes a dashboard built with Spark Streaming, SparkOnHbase and Morphlines.
  • In InfoQ, Srini Penchikala of Pinterest explains why he’s using Spark Streaming, Kafka and MemSQL for a real-time application.

Data Science

  • On the Databricks blog, Joseph Bradley writes an excellent article on Topic Modeling with Spark’s new Latent Dirichlet Allocation capability.

Developer

  • On the Databricks blog, Michael Armbrust describes new Spark SQL features in Spark 1.3
  • On Slideshare, Vida Ha and Holden Karau share tips for writing better Spark programs; video here.

Deep Learning

  • Tomasz Malisiewicz of Vision.ai blogs on Deep Learning versus Machine Learning versus Pattern Recognition.

RapidMiner

  • RapidMiner publishes a white paper on code-free analytics in Hadoop, and another on Hadoop security.

Spark Summit East: A Report (Updated)

Updated with links to slides where available.  Some links are broken, conference organizers have been notified.

Spark Summit East 2015 met on March 18 and 19 at the Sheraton Times Square in New York City.  Conference organizers announced another sellout (like the last two Spark Summits on the West Coast).

Competition for speaking slots at Spark events is heating up.  There were 170 submissions for 30 speaking slots at this event, compared to 85 submissions for 50 slots at Spark Summit 2014.  Compared to the last Spark Summit, presentations in the Applications Track, which I attended, were more polished, and demonstrate real progress in putting Spark to work.

The “father” of Spark, Matei Zaharia, kicked off the conference with a review of Spark progress in 2014 and planned enhancements for 2015.  Highlights of 2014 include:

  • Growth in contributors, from 150 to 500
  • Growth in the code base, from 190K lines to 370K lines
  • More than 500 known production instances at the close of 2014

Spark remains the most active project in the Hadoop ecosystem.

Also, in 2014, a team at Databricks smashed the Daytona GreySort record for petabyte-scale sorting.  The previous record, set in 2013, used MapReduce running on 2,100 machines to complete the task in 72 minutes.  The new record, set by Databricks with Spark running in the cloud, used 207 machines to complete the task in 23 minutes.

Key enhancements projected for 2015 include:

  • DataFrames, which are similar to frames in R, already released in Spark 1.3
  • R interface, which currently exists as SparkR, an independent project, targeted to be merged into Spark 1.4 in June
  • Enhancements to machine learning pipelines, which are sequences of tasks linked together into a process
  • Continued expansion of smart interfaces to external data sources, pushing logic into the sources
  • Spark packages — a repository for third-party packages (comparable to CRAN)

Databricks CEO Ion Stoica followed with a pitch for Databricks Cloud, which included brief testimonials from myfitnesspal, Automatic, Zoomdata, Uncharted Software and Tresata.

Additional keynoters included Brian Schimpf of Palantir, Matthew Glickman of Goldman Sachs and Peter Wang of Continuum Analytics.

Spark contributors presented detailed views on the current state of Spark:

  • Michael Armbrust, Spark SQL lead developer presented on the new DataFrames API and other enhancements to Spark SQL.
  • Tathagata Das delivered a talk on the current state and future of Spark Streaming.
  • Joseph Bradley covered MLLib, focusing on the Pipelines capability added in Spark 1.2
  • Ankur Dave offered an overview of GraphX, Spark’s graph engine.

Several observations from the Applications track:

(1) Geospatial applications had a strong presence.

  • Automatic, Tresata and Uncharted all showed live demonstrations of marketable products with geospatial components running on Spark
  • Mansour Raad of ESRI followed his boffo performance at Strata/Hadoop World last October with a virtuoso demonstration of Spark with massive spatial and temporal datasets and the ESRI open source GIS stack

(2) Spark provides a great platform for recommendation engines.

  • Comcast uses Spark to serve personalized recommendations based on analysis of billions of machine-generated events
  • Gilt Groupe uses Spark for a similar real-time application supporting flash sale events, where products are available for a limited time and in limited quantities
  • Leah McGuire of Salesforce described her work building a recommendation system using Spark

(3) Spark is gaining credibility in retail banking.

  • Sandy Ryza of Cloudera presented on Value At Risk (VAR) computations in Spark, a critical element in Basel reporting and stress testing
  • Startup Tresata demonstrated its application for Anti Money Laundering, which is built on a social graph built in Spark

(4) Spark has traction in the life sciences

  • Jeremy Freeman of HHMI Janelia Research Center, a regular presenter at Spark Summits, covered Spark’s unique capability for streaming machine learning.
  • David Tester of Novartis presented plans to build a trillion-edge graph for genomic integration
  • Timothy Danforth of Berkeley’s AMPLab delivered a presentation on next-generation genomics with Spark and ADAM
  • Kevin Mader of ETH Zurich spoke about turning big hairy 3D images into simple, robust, reproducible numbers without resorting to black boxes or magic

Also in the applications track: presenters from Baidu, myfitnesspal and Shopify.

Software for High Performance Advanced Analytics

Strata+Hadoop World week is a good opportunity to update the list of platforms for high-performance advanced analytics.  Vendors are hustling this week to announce their latest enhancements; I’ll post updates as needed.

First some definition.  The scope of this analysis includes software with the following properties:

  • Support for supervised and unsupervised machine learning
  • Support for distributed processing
  • Open platform or multi-vendor platform support
  • Availability of commercial support

There are three main “architectures” for high-performance advanced analytics available today:

  • Integration with an MPP database through table functions
  • Push-down integration with Hadoop
  • Native distributed computing, freestanding or co-located with Hadoop

I’ve written previously about the importance of distributed computing for high-performance predictive analytics, why it’s difficult to deliver and potentially disruptive to the analytics ecosystem.

This analysis excludes software that runs exclusively in a single vendor’s data platform (such as Netezza Analytics, Oracle Advanced Analytics or Teradata Aster‘s built-in analytic functions.)  While each of these vendors seeks to use advanced analytics to differentiate its data warehousing products, most enterprises are unwilling to invest in an analytics architecture that promotes vendor lock-in.  In my opinion, IBM, Oracle and Teradata should consider open sourcing their machine learning libraries, since they’re effectively giving them away anyway.

This analysis also excludes open source libraries “in the wild” (such as Vowpal Wabbit) that lack significant commercial support.

Open Source Software

H2O 

Distributor: H2O.ai (formerly 0xdata)

H20 is an open source distributed in-memory computing platform designed for deployment in Hadoop or free-standing clusters. Current functionality (Release 2.8.4.4) includes Cox Proportional Hazards modeling, Deep Learning, generalized linear models, gradient boosted classification and regression, k-Means clustering, Naive Bayes classifier, principal components analysis, and Random Forests. The software also includes tooling for data transformation, model assessment and scoring.   Users interact with the software through a web interface, a REST API or the h2o package in R.  H2O runs on Spark through the Sparkling Water interface, which includes a new Python API.

H2O.ai provides commercial support for the open source software.  There is a rapidly growing user community for H2O, and H2O.ai cites public reference customers such as Cisco, eBay, Paypal and Nielsen.

MADLib 

Distributor: Pivotal Software

MADLib is an open source machine learning library with a SQL interface that runs in Pivotal Greenplum Database 4.2 or PostgreSQL 9.2+ (as of Release 1.7).  While primarily a captive project of Pivotal Software — most of the top contributors are Pivotal or EMC employees — the support for PostgreSQL qualifies it for this list.    MADLib includes rich analytic functionality, including ten different regression methods, linear systems, matrix factorization, tree-based methods, association rules, clustering, topic modeling, text analysis, time series analysis and dimensionality reduction techniques.

Mahout

Distributor: Apache Software Foundation

Mahout is an eclectic machine learning project incepted in 2011 and currently included in major Hadoop distributions, though it seems to be something of an embarrassment to the community.  The development cadence on Mahout is very slow, as key contributors appear to have abandoned the project three years ago.   Currently (Release 0.9), the project includes twenty algorithms; five of these (including logistic regression and multilayer perceptron) run on a single node only, while the rest run through MapReduce.  To its credit, the Mahout team has cleaned up the software, deprecating unsupported functionality and mandating that all future development will run in Spark.  For Release 1.0, the team has announced plans to deliver several existing algorithms in Spark and H2O, and also to deliver something for Flink (for what that’s worth).  Several commercial vendors, including Predixion Software and RapidMiner leverage Mahout tooling in the back end for their analytic packages, though most are scrambling to rebuild on Spark.

Spark

Distributor: Apache Software Foundation

Spark is currently the platform of choice for open source high-performance advanced analytics.  Spark is a distributed in-memory computing framework with libraries for SQL, machine learning, graph analytics and streaming analytics; currently (Release 1.2) it supports Scala, Python and Java APIs, and the project plans to add an R interface in Release 1.3.  Spark runs either as a free-standing cluster, in AWS EC2, on Apache Mesos or in Hadoop under YARN.

The machine learning library (MLLib) currently (1.2) includes basic statistics, techniques for classification and regression (linear models, Naive Bayes, decision trees, ensembles of trees), alternating least squares for collaborative filtering, k-means clustering, singular value decomposition and principal components analysis for dimension reduction, tools for feature extraction and transformation, plus two optimization primitives for developers.  Thanks to large and growing contributor community, Spark MLLib’s functionality is expanding faster than any other open source or commercial software listed in this article.

For more detail about Spark, see my Apache Spark Page.

Commercial Software

Alpine Chorus

Vendor: Alpine Data Labs

Alpine targets a business user persona with a visual workflow-oriented interface and push-down integration with analytics that run in Hadoop or relational databases.  Although Alpine claims support for all major Hadoop distributions and several MPP databases, in practice most customers seem to use Alpine with Pivotal Greenplum database.  (Alpine and Greenplum have common roots in the EMC ecosystem).   Usability is the product’s key selling point, and the analytic feature set is relatively modest; however, Chorus’ collaboration and data cataloguing capabilities are unique.  Alpine’s customer list is growing; the list does not include a recent win (together with Pivotal) at a large global retailer.

dbLytix

Vendor: Fuzzy Logix

dbLytix is a library of more than eight hundred functions for advanced analytics; analytics run as database table functions and are currently supported in Informix, MySQL, Netezza, ParAccel, SQL Server, Sybase IQ, Teradata Aster and Teradata Database.  Embedded in SQL, analytics may be invoked from a range of application, including custom web interfaces, Microsoft Excel, popular BI tools, SAS or SPSS.   The software is highly extensible, and Fuzzy Logix offers a team of well-qualified consultants and developers for custom applications.

For those seeking the absolute cutting edge in advanced analytics, Fuzzy’s Tanay Zx Series offers more than five hundred analytic functions designed to run on GPU chips.  Tanay is available either as a software library or as an analytic appliance.

IBM SPSS Analytic Server

Vendor: IBM

Analytic Server serves as a Hadoop back end for IBM SPSS Modeler, a mature analytic workbench targeted to business users (licensed separately).  The product, which runs on Apache Hadoop, Cloudera CDH, Hortonworks HDP and IBM BigInsights, enables push-down MapReduce for a limited number of Modeler nodes.  Analytic Server supports most SPSS Modeler data preparation nodes, scoring for twenty-four different modeling methods, and model-building operations for linear models, neural networks and decision trees.  The cadence of enhancements for this product is very slow; first released in May 2013, IBM has released a single maintenance release since then.

RapidMiner Radoop

Vendor: RapidMiner

(Updated for Release 2.2)

RapidMiner targets a business user persona with a “code-free” user interface and deep selection of analytic features.  Last June, the company acquired Radoop, a three-year-old business partner based in Budapest.  Radoop brings to RapidMiner the ability to push down analytic processing into Hadoop using a mix of MapReduce, Mahout, Hive, Pig and Spark operations.

RapidMiner Radoop 2.2 supports more than fifty operators for data transformation, plus the ability to implement custom HiveQL and Pig scripts.  For machine learning, RapidMiner supports k-means, fuzzy k-means and canopy clustering, PCA, correlation and covariance matrices, Naive Bayes classifier and two Spark MLLib algorithms (logistic regression and decision trees); Radoop also supports Hadoop scoring capabilities for any model created in RapidMiner.

Support for Hadoop distributions is excellent, including Cloudera CDH, Hortonworks HDP, Apache Hadoop, MapR, Amazon EMR and Datastax Enterprise.  As of Release 2.2, Radoop supports Kerberos authentication.

Revolution R Enterprise

Vendor: Revolution Analytics

Revolution R Enterprise bundles a number of components, including Revolution R, an enhanced and commercially supported R distribution, a Windows IDE, integration tools and ScaleR, a suite of distributed algorithms for predictive analytics with an R interface.  A little over a year ago, Revolution released its version 7.0, which enables ScaleR to integrate with Hadoop using push-down MapReduce.   The mix of techniques currently supported in Hadoop includes tools for data transformation, descriptive statistics, linear and logistic regression, generalized linear models, decision trees, ensemble models and k-means clustering.   Revolution Analytics supports ScaleR in Cloudera, Hortonworks and MapR; Teradata Database; and in free-standing clusters running on IBM Platform LSF or Windows Server HPC.  Microsoft recently announced that it will acquire Revolution Analytics; this will provide the company with additional resources to develop and enhance the platform.

SAS High Performance Analytics

Vendor: SAS

SAS High Performance Analytics (HPA) is a distributed in-memory analytics engine that runs in Teradata, Greenplum or Oracle appliances, on commodity hardware or co-located in Hadoop (Apache, Cloudera or Hortonworks).  In Hadoop, HPA can be deployed either in a symmetric configuration (SAS instance on each DataNode) or in an asymmetric configuration (SAS deployed on dedicated “Analysis” nodes within the Hadoop cluster.)  While an asymmetric architecture seems less than ideal (due to the need for data movement and shuffling), it reduces the need to upgrade the hardware on every node and reduces SAS software licensing costs.

Functionally, there are five different bundles, for statistics, data mining, text mining, econometrics and optimization; each of these is separately licensed.  End users leverage the algorithms from SAS Enterprise Miner, which is also separately licensed.  Analytic functionality is rich compared to available high-performance alternatives, but existing SAS users will be surprised to see that many techniques available in SAS/STAT are unavailable in HPA.

SAS first introduced HPA in December, 2011 with great fanfare.  To date the product lacks a single public reference customer; this could mean that SAS’ Marketing organization is asleep at the switch, or it could mean that customer success stories with the product are few and far between.  As always with SAS, cost is an issue with prospective customers; other issues cited by customers who have evaluated the product include HPA’s inability to run existing programs developed in Legacy SAS, and concerns about the proprietary architecture. Interestingly, SAS no longer talks up this product in venues like Strata, pointing prospective customers to SAS In-Memory Statistics for Hadoop (see below) instead.

SAS In-Memory Statistics for Hadoop

Vendor: SAS

SAS In-Memory Statistics for Hadoop (IMSH) is an analytics application that runs on SAS’ “other” distributed in-memory architecture (SAS LASR Server).  Why does SAS have two in-memory architectures?  Good luck getting SAS to explain that in a coherent manner.  The best explanation, so far as I can tell, is a “mud-on-the-wall” approach to new product development.

Functionally, IMSH Release 2.5 supports data prep with SAS DS2 (an object-oriented language), descriptive statistics, classification and regression trees (C4.5), forecasting, general and generalized linear models, logistic regression, a Random Forests lookalike, clustering, association rule mining, text mining and a recommendation system.   Users interact with the product through SAS Studio, a web-based IDE introduced in SAS 9.4.

Overall, IMSH is a better value than HPA.  SAS prices this software based on the number of cores in the servers upon which it is deployed; while I can’t disclose the list price per core, it’s fair to say that any configuration beyond a sandbox will rapidly approach seven figures for the first year fee.

Skytree

Product: Skytree Infinity

Skytree began life as an academic machine learning project (FastLab, at Georgia Tech); the developers shopped the distributed machine learning core to a number of vendors and, finding no buyers, launched as a commercial software vendor in January 2013.  Recently rebranded from Skytree Server to Skytree Infinity, the product now includes modules for data marshaling and preparation that run on Spark.  Distributed algorithms can run as a free-standing cluster or co-located in Hadoop under YARN.  The product has a programming interface; the vendor claims ability to run from R, Weka, C++ and Python.   Neither Skytree’s modest list of algorithms nor its short list of public reference customers has changed in the past two years.

Still More Comments on Microsoft and Revolution Analytics

Three full business days post-announcement, and stories continue to roll in.

Stephen Sowyer of TDWI writes an excellent summary of what Microsoft will likely do with Revolution Analytics.  He correctly notes, for example, that Microsoft is unlikely to develop a business user interface for R with code-generating capabilities (comparable to SAS Enterprise Guide, for example).  This is difficult to do, and the demand is low; people who care about R tend to like working in a programming environment, and value the ability to write their own code.  Business users, on the other hand, tend to be indifferent about the underlying code generated by the application.

Since Revolution’s Windows-based IDE requires some investment to keep it competitive, the most likely scenario is that Microsoft will add R to the Visual Studio suite.

Mr. Sowyer also notes that popular data warehouses (such as Oracle, IBM Netezza and Teradata Aster) can run R scripts in-database.  While this is true, what these databases cannot do is run R scripts in distributed mode, which limits the capability to embarrassingly parallel tasks.  Enabling R scripts to run in distributed databases — necessary for Big Data — is a substantial development project, which is why Revolution Analytics completed only two such ports (one to Hadoop and one to Teradata).

While Microsoft’s deep pockets give Revolution Analytics the means to support more platforms, they still need the active collaboration of database vendors.  Oracle and Pivotal have their own strategies for R, so partnerships with those vendors is unlikely.

For some time now, commercial database vendors have attempted to differentiate their product by including machine learning engines.  Teradata was the first, in 1987, followed by IBM DB2 in 1992; SQL Server followed in the late 1990s, and Oracle acquired what was left of Thinking Machines in 1999 primarily so it could build Darwin software for predictive analytics into Oracle database.  None of these efforts has gained much traction with working analysts. for several reasons: (1) database vendors generally sell to the IT organization and not to an organization’s end users; (2) as a result, most organizations do not link the purchase decision for databases and analytics; (3) users for predictive analytics tend to be few in number compared to SQL and BI users, and their needs tend to get overlooked.

Bottom line: I think it is doubtful that Microsoft will pursue enabling R to run in relational databases other than SQL Server, and they will drop Revolution’s “Write Once Deploy Anywhere” tagline, as it is impossible to deliver.

Elsewhere, Mr. Dan Woods doubles down on his argument that Microsoft should emulate Tibco, which is like arguing that the Seattle Seahawks should emulate the Jacksonville Jaguars.  Sorry, JAX; it just wasn’t your year.

 

2015: Predictions for Big Analytics

First, a review of last year’s predictions:

(1) Apache Spark matures as the preferred platform for advanced analytics in Hadoop.

At the New York Strata/Hadoop World conference in October, if you took a drink each time a speaker said “Spark”, you would struggle to make it past noon.  At my lunch table, every single person said his company is currently evaluating Spark.  There are few alternatives to Spark for advanced analytics in Hadoop, and the platform has arrived.

(2) “Co-location” will be the latest buzzword.

Few people use the word “co-location”, but thanks to YARN, vendors like SAS and Skytree are now able to honestly position their products as running “inside” Hadoop.  YARN has changed the landscape for analytics in Hadoop, so that products that interface through MapReduce are obsolete.

(3) Graph engines will be hot.

Graph engines did not take off in 2014.  Development on Apache Giraph has flatlined, and open source GraphLab is quiet as well. Apache Spark’s GraphX is the only graph engine for Hadoop under active development; the Spark team recently promoted GraphX from Alpha to production.  However, with just 10 out of 132 contributors working on GraphX in Release 1.2, the graph engine is relatively quiet compared to the SQL, Machine Learning and Streaming modules.

(4) R approaches parity with SAS in the commercial job market.

As of early 2014, when Bob Muenchin last updated his job market statistics, SAS led R in job postings, but R was closing the gap rapidly.

Linda Burtch of Burtch Works is the nation’s leading executive recruiter for quants and data scientists.  I asked Linda what analytic languages hiring managers seek when they hire quants.  “My clients are still more frequently asking for SAS, although many more are now asking for either SAS or R,” she says.   “I also recommend to my clients who ask specifically for SAS skills to be open to those using R, and many will agree after the suggestion. ”

 (5) SAP emerges as the company most likely to buy SAS.

After much hype about the partnership in late 2013, SAS and SAP issued not a single press release in 2014.  The dollar’s strength against the Euro makes it less likely that SAP will buy SAS.

(6) Competition heats up for “easy to use” predictive analytics.

Software companies target the “easy to use” analytics market because it’s larger than the expert market and because expert analysts rarely switch.  Alpine, Alteryx, and Rapid Miner all gained market presence in 2014; Dell’s acquisition of Statsoft gives that company the deep pockets they need for a makeover.  In easy to use cloud analytics, StatWing has added functionality, and IBM Watson Analytics emerged from beta.

Four out of six ain’t bad.  Now looking ahead:

(1) Apache Spark usage will explode.

While interest in Spark took off in 2014, relatively few people actually use the platform, which appeals primarily to hard-core data scientists.  That will change in 2015, for several reasons:

  • The R interface planned for release in Q1 opens the platform to a large and engaged community of users
  • Alteryx, Alpine and other easy to use analytics tools currently support or plan to support Spark RDDs as a data source
  • Databricks Cloud offers an easy way to spin up a Spark cluster

As a result of these and other innovations, there will be many more Spark users in twelve months than there are today.

(2) Analytics in the cloud will take off.

Yes, I know — some companies are reluctant to put their “sensitive” data in the cloud.  And yet, all of the top ten data breaches in 2014 defeated an on-premises security system.  Organizations are waking up to the fact that management practices are the critical factor in data security — not the physical location of the data.

Cloud is eating the analytics world for three big reasons:

  • Analytic workloads tend to be lumpy and difficult to predict
  • Analytic projects often need to get up and running quickly
  • Analytic service providers operate in a variable cost world, with limited capital for infrastructure

Analytic software options available in the Amazon Marketplace are increasing rapidly; current options include Revolution R, BigML and YHat, among others.  For the business user, StatWing and IBM Watson Analytics provide compelling independent cloud-based platforms.

Even SAS seeks to jump on the Cloud bandwagon, touting its support for Amazon Web Services.  Cloud devotees may be disappointed, however, to discover that SAS does not offer elastic pricing for AWS,  lacks a native access engine for RedShift, and does not support its Hadoop interface with EMR.

(3) Python will continue to gain on R as the preferred open source analytics platform.

The Python versus R debate is at least as contentious as the SAS versus R debate, and equally tiresome.  As a general-purpose scripting language, Python’s total user base is likely larger than R’s user base.  For analytics, however, the evidence suggests that R still leads Python, but that Python is catching up.  According to a recent poll by KDNuggets, more people switch from R to Python than the other way ’round.

Both languages have their virtues. The sheer volume of analytic features in R is much greater than Python, though in certain areas of data science (such as Deep Learning) Python appears to have the edge.  Devotees of each language claim that it is easier to use than the other, but the two languages are at rough parity by objective measures.

Python has two key advantages over R.  As a general-purpose language, it is a better tool for application development; hence, for embedded analytic applications (such as recommendation engines, decision engines and online scoring), Python gets the nod over R.  Second, Python’s open source license is less restrictive than the R license, which makes it a better choice for commercial use.  There are provisions in the R license that scare the pants off some company lawyers, rightly or wrongly.

(4) H2O will continue to win respect and customers in the Big Analytics market.

If you’re interested in scalable analytics but haven’t checked out H2O, you should.  H2O is a rapidly growing true open source project for distributed analytics; it runs in clusters, in Hadoop and in Amazon Cloud; offers an excellent R interface together with Java and Scala APIs; and is accessible from Tableau.  H2O supports a rich and growing machine learning library that includes Deep Learning and the only available distributed Gradient Boosting algorithm on the market today.

While the software is freely available, H2O offers support and services for an attractive price.  The company currently claims more than two thousand users, including reference customers Cisco, eBay, Nielsen and Paypal.

(5) SAS customers will continue to seek alternatives.

SAS once had an almost religious loyalty from its customers.  This is no longer the case; in a recent report published by Gartner, surveyed executives reported they are more likely to discontinue use of SAS than any other business intelligence software.  While respondents rated SAS above average on sales experience and average on product quality, SAS fared poorly in measures of usability and ease of integration.  While the Gartner survey does not address pricing, it’s fair to say that no vendor can command premium prices without an outstanding product.

While few enterprises plan to pull the plug on SAS entirely, many are limiting growth of the SAS footprint and actively developing alternatives.  This is especially marked in the analytic services industry, which tends to attract people with the skills to use Python or R, and where cost control is important.  Even among big banks and pharma companies, though, SAS user headcount is declining.

SAS in Hadoop: An Update

SAS supports several different products that run “inside” Hadoop based on two different in-memory architectures:

(1) The SAS High Performance Analytics suite, originally designed to run in dedicated Teradata and Greenplum appliances, includes five modules: Statistics, Data Mining, Text Mining, Econometrics and Optimization.

(2) A second set of products — SAS Visual Analytics, SAS Visual Statistics and SAS In-Memory Statistics for Hadoop — run on the SAS LASR Server architecture, which is designed for high concurrency.

SAS’ recent marketing efforts appear to favor the LASR-based software, so that is the focus of this post.  At the recent Strata + Hadoop World conference in New York, I was able to sit down with Paul Kent, Vice President of Big Data at SAS, to discuss some technical aspects of SAS LASR Server.   Paul was most generous with his time.  We discussed three areas:

(1) Can SAS LASR Server work directly with data in Hadoop?

According to SAS documentation, LASR Server can read data from traditional SAS datasets, relational databases (using SAS/Access Software) or data stored in SAS’ proprietary SASHDAT format.   That suggests SAS users must preprocess Hadoop data before loading it into LASR Server.

Paul explained that LASR Server can read Hadoop data through SAS/ACCESS Interface to Hadoop, which makes HDFS data appear to SAS as a virtual relational database. (Of course, this applies to structured data only). Reading from SASHDAT is much faster, however, so users should consider the tradeoff between the time needed to pre-process data into SASHDAT versus the runtime with SAS/ACCESS.

SAS/ACCESS Interface to Hadoop can read all widely used Hadoop data formats, including ORC, Parquet and Tab-Delimited; it can also read user-defined formats.  This builds on SAS’ long-standing ability to work with enterprise data everywhere.

Base SAS supports basic data cleansing and data transformation capability through DATA Step and DS2 processing, and can write SASHDAT format; however, since LASR Server runs DS2 but not DATA Step code, this transformation could require extract and movement to an external server.   Alternatively, users can pass Hive, Pig or MapReduce commands to Hadoop to perform data transformation in place.   Users can also license SAS ETL Server and build a process to convert raw data and store it in SASHDAT.

SAS Visual Analytics, which runs on LASR Server, includes the Data Builder component for modest data preparation tasks.

(2) Can SAS LASR Server and MapReduce run concurrently in Hadoop?

At last year’s Strata + Hadoop World, Paul mentioned some issues running SAS and MapReduce at the same time; workarounds included running SAS during the daytime and MapReduce at night. Clients who have evaluated LASR-based software say this is a concern.

Paul notes that given a fixed number of task tracker slots on a node, any use of slots by SAS necessarily reduces the number of slots available for MapReduce; this can create conflicts for customers who are unwilling or unable to make a static allocation between MapReduce and SAS workload.  This issue is not unique to SAS, but potentially applies to any software co-located with Hadoop prior to the introduction of YARN.

Under Hadoop 1.0, Hadoop workload management was tightly married to MapReduce.  Applications operating independently from MapReduce (like SAS) were essentially ungoverned.  The introduction of YARN late last year eliminates this issue because it supports unified workload management for MapReduce and non-MapReduce applications.

(3) Can SAS LASR Server run on standard commodity hardware?

SAS supports LASR Server on “spec” hardware from a number of vendors, but does not recommend specific boxes; instead, it works with customers to define expected workload, then relies on its hardware partners to recommend infrastructure. Hence, prospective customers should consult with hardware suppliers or independent experts when sizing hardware for SAS, and not rely solely on verbal representations by SAS sales and marketing personnel.

While the definition of a “standard” Hadoop DataNode node server changes rapidly, industry experts such as Doug Henschen say the current standard is a 12-core machine with 64-128G RAM; sources at Cloudera confirm this is a typical configuration.   A recently published paper from HP and Hortonworks positions the reference spec for RAM at 96 GB RAM for memory-intensive applications.

In contrast, the minimum hardware recommended by HP for SAS LASR Server is a 16-core machine with 256G RAM.

It should not surprise anyone that in-memory software needs more memory; Henschen, for example, points out that organizations seeking to use Spark or Impala should specify more memory.   While some prospective customers may balk at the task of upgrading memory in every DataNode of a large cluster, the cost of memory is coming down, so this should not be an issue in the long run.

Spark Summit 2014 Roundup

Key highlights from the 2014 Spark Summit:

  • Spark is the single most active project in the Hadoop ecosystem
  • Among Hadoop distributors, Cloudera and MapR are clear leaders with Spark
  • SAP now offers a certified Spark distribution and integration with HANA
  • Datastax has delivered a Cassandra connector for Spark
  • Databricks plans to offer a cloud service for Spark
  • Spark SQL will absorb the Shark project for fast SQL
  • Cloudera, MapR, IBM and Intel plan to port Hive to Spark
  • Spark MLLIb will double its supported algorithms in the next release

Last December, the 2013 Spark Summit pulled 450 attendees for a two-day event.  Six months later, the Spark Summit 2014 sold out at more than a thousand seats for a three-day affair.

It’s always ironic when manual registration at a tech conference produces long lines:

SS4

Databricks CTO Matei Zaharia kicked off the keynotes with his recap of Spark progress since the last summit.   Zaharia enumerated Spark’s two big goals: a unified platform for Big Data applications combined with a standard library for analytics.  CEO Ion Stoica followed with a Databricks update, including an announcement of the SAP alliance and an impressive demo of Databricks Cloud, currently in private beta.  Separately, Databricks announced $33 million in Series B funding.

Spark Release Manager Patrick Wendell delivered an overview of planned development over the next several releases.   Wendell confirmed Spark’s commitment to stable APIs; patches that break the API fail the build.   The project will deliver dot releases every three months beginning in August 2014, and maintenance releases as needed.   Development focus in the near future will be in the libraries:

  • Spark SQL: optimization, extensions (toward SQL 92), integration (NoSQL, RDBMS), incorporation of Shark
  • MLLib : rapid expansion of algorithms (including descriptive statistics, NMF. Sparse SVM, LDA), tighter integration with R
  • Streaming: new data sources, tighter Flume integration
  • GraphX: optimizations and API stability

Mike Franklin of Berkeley’s AMPLab summarized new developments in the Berkeley Data Analytics Stack (“BadAss”), including significant new work in genomics and energy, as well as improvements to Tachyon and MLBase.  Dave Patterson elaborated on AMPLab’s work in genomics, providing examples showing how Spark has markedly reduced both cost and runtime for genomic analysis.

Cloudera, Datastax, MapR and SAP demonstrated that the first rule of success is to show up:

  • Mike Olson of Cloudera responded to Hortonworks’ snark by confirming Cloudera’s commitment to Impala as well as Hive on Spark.  Olson drew a round of applause when he invited Horton to join the Hive on Spark consortium.
  • Martin van Ryswyk of Datastax announced immediate availability of a Cassandra driver for Spark, a component that exposes Cassandra tables as Spark RDDs.  Datastax continues to work on tighter integration with Spark, including support for Spark SQL, Streaming and GraphX libraries.  In the breakouts, Datastax delivered a deeper briefing on integration with Spark Streaming.
  • M.C. Srivas of MapR highlighted Spark benefits realized by four MapR customers, including Cisco, a health insurer, an ad platform and a pharma company.  MapR continues to claim support for Shark as a differentiator, a point mooted by the announcement that Spark SQL will soon absorb Shark.
  • Aiaz Kazi of SAP seemed pleased that most of the audience has heard of SAP HANA, and delivered an overview of SAP’s integration with Spark.

IBM wasted a Platinum sponsorship by sending some engineers to talk about “System T”, IBM’s text mining application, with passing references to Spark.  Although IBM Infosphere BigInsights is a certified Spark distribution, IBM appears uncommitted to Spark; the lack of executive presence at the Summit stood out in sharp contrast to Cloudera and MapR.

Silver sponsors Hortonworks and Pivotal hosted tables in the vendor area, but did not present anything.

Neuroscientist Jeremy Freeman, back by popular demand from the 2013 Spark Summit, presented latest developments in his team’s research into animal brains using Spark as an analytics platform.  Freeman’s presentations are among the best demonstrations of applied analytics that I’ve seen in any forum.

A number of vendors in the Spark ecosystem delivered presentations showing how their applications leverage Spark, including:

The most significant change from the 2013 Spark Summit is the number of reported production users for Spark.  While the December conference focused on Spark’s potential, I counted several dozen production users among the presentations I attended.

Also among the sellout crowd: a SAS executive checking to see if there is anything to this open source and vendor-neutral stuff.  Apparently, he did not get Jim Goodnight’s message that “Big Data is hype manufactured by media“.