The Year in Machine Learning (Part Four)

This is the fourth installment in a four-part review of 2016 in machine learning and deep learning.

— Part One covered Top Trends in the field, including concerns about bias, interpretability, deep learning’s explosive growth, the democratization of supercomputing, and the emergence of cloud machine learning platforms.

— Part Two surveyed significant developments in Open Source machine learning projects, such as R, Python, Spark, Flink, H2O, TensorFlow, and others.

— Part Three reviewed the machine learning and deep learning initiatives of Big Tech Brands, industry leaders with significant budgets for software development and marketing.

In Part Four, I profile eleven startups in the machine learning and deep learning space. A search for “machine learning” in Crunchbase yields 2,264 companies. This includes companies, such as MemSQL, who offer absolutely no machine learning capability but hype it anyway because Marketing; it also includes application software and service providers, such as Zebra Medical Imaging, who build machine learning into the services they provide.

All of the companies profiled in this post provide machine learning tools as software or services for data scientists or for business users. Within that broad definition, the firms are highly diverse:

Continuum Analytics, Databricks, and H2O.ai drive open source projects (Anaconda, Apache Spark, and H2O, respectively) and deliver commercial support.

Alpine Data, Dataiku, and Domino Data Lab offer commercially licensed collaboration tools for data science teams. All three run on top of an open source platform.

KNIME and RapidMiner originated in Europe, where they have large user communities. Both combine a business user interface with the ability to work with Big Data platforms.

Fuzzy Logix and Skytree provide specialized capabilities primarily for data scientists.

DataRobot delivers a fully automated workflow for predictive analytics that appeals to data scientists and business users. It runs on an open source platform.

Four companies deserve an “honorable mention” but I haven’t profiled them in depth:

— Two startups, BigML and SkyMind, are still in seed funding stage. I don’t profile them below, but they are worth watching. BigML is a cloud-based machine learning service; SkyMind drives the DL4J open source project for deep learning.

— Two additional companies aren’t startups because they’ve been in business for more than thirty years. Salford Systems developed the original software for CART and Random Forests; the company has added more techniques to its suite over time and has a loyal following. Statistica, recently jettisoned by Dell, delivers a statistical package with broad capabilities; the company consistently performs well in user satisfaction surveys.

I’d like to take a moment to thank those who contributed tips and ideas for this series, including Sri Ambati, Betty Candel, Leslie Miller, Bob Muenchen, Thomas Ott, Peter Prettenhofer, Jesus Puente, Dan Putler, David Smith, and Oliver Vagner.

Alpine Data

In 2016, the company formerly known as Alpine Data Labs changed its name and CEO. Alpine dropped the “Labs” from its brand — I guess they didn’t want to be confused with companies that test stool samples — so now it’s just Alpine Data. And, ex-CEO Joe Otto is now an “Advisor,” replaced by Dan Udoutch, a “seasoned executive” with 30+ years of experience in business and zero years of experience in machine learning or advanced analytics. The company also dropped its CFO and head of Sales during the year, presumably because the investors were extremely happy with Alpine’s business results.

Originally built to run in Greenplum database, the company ported some of its algorithms to MapReduce in early 2013. Riding a wave of Hadoop buzz, Alpine closed on a venture round in November 2013, just in time for everyone to realize that MapReduce sucks for machine learning. The company quickly turned to Spark — Databricks certified Alpine on Spark in 2014 — and has gradually ported its analytics operators to the new framework.

screen-shot-2016-12-08-at-3-17-32-pm

It seems that rebuilding on Spark has been a bit of a slog because Alpine hasn’t raised a fresh round of capital since 2013. As a general rule, startups that make their numbers get fresh rounds every 12-24 months; companies that don’t get fresh funding likely aren’t making their numbers. Investors aren’t stupid and, like the dog that did not bark, a venture capital round that does not happen says a lot about a company’s prospects.

In product news, the company announced Chorus 6, a major release, in May, and Chorus 6.1 in September. Enhancements in the new releases include:

— Integration with Jupyter notebooks.

— Additional machine learning operators.

— Spark auto-tuning. Chorus pushes processing to Spark, and Alpine has developed an optimizer to tune the generated Spark code.

PFA support for model export. This is excellent, a cutting edge feature.

— Runtime performance improvements.

— Tweaks to the user experience.

Lawrence Spracklen, Alpine’s VP of Engineering, will speak about Spark auto-tuning at the Spark Summit East in Boston.

Prospective users and customers should look for evidence that Alpine is a viable company, such as a new funding round, or audited financials that show positive cash flow.

Continuum Analytics

Continuum Analytics develops and supports Anaconda, an open source Python distribution for data science. The core Anaconda bundle includes Navigator, a desktop GUI that manages applications, packages, environments and channels; 150 Python packages that are widely used in data science; and performance optimizations. Continuum also offers commercially licensed extensions to Anaconda for scalability, high performance and ease of use.

fusion

Anaconda 2.5, announced in February, introduced performance optimization with the Intel® Math Kernel Library. Beginning with this release, Continuum bundled Anaconda with Microsoft R Open, an enhanced free R distribution.

In 2016, Continuum introduced two major additions to the Anaconda platform:

Anaconda Enterprise Notebooks, an enhanced version of Jupyter notebooks

Anaconda Mosaic, a tool for cataloging heterogeneous data

The company also announced partnerships with Cloudera, Intel, and IBM. In September, Continuum disclosed $4 million in equity financing. The company was surprisingly quiet about the round — there was no press release — possibly because it was undersubscribed.

Continuum’s AnacondaCon 2017 conference meets in Austin February 7-9.

Databricks

Databricks leads the development of Apache Spark (profiled in Part Two of this review) and offers a cloud-based managed service built on Spark. The company also offers training, certification, and organizes the Spark Summits.

The team that originally developed Spark founded Databricks in 2013. Company employees continue to play a key role in Apache Spark, holding a plurality of the seats on the Project Management Committee and contributing more new code to the project than any other company.

visualizations-in-databricks

In 2016, Databricks added a dashboarding tool and a RESTful interface for job and cluster management to its core managed service. The company made major enhancements to the Databricks security framework, completed SOC 2 Type 1 certification for enterprise security, announced HIPAA compliance and availability in Amazon Web Services’ GovCloud for sensitive data and regulated workloads.

Databricks also launched a free Community edition; a five-part series of free MOOCs; completed its annual survey of the Spark user community, and organized three Spark Summits.

In December, Databricks announced a $60 million “C” round of venture capital. New Enterprise Associates led the round; Andreessen Horowitz participated.

Dataiku

Dataiku develops and markets Data Science Studio (DSS), a workflow and collaboration environment for machine learning and advanced analytics. Users interact with the software through a drag-and-drop interface; DSS pushes processing down to Hadoop and Spark. The product includes connectors to a wide variety of file systems, SQL platforms, cloud data stores and NoSQL databases.

dataiku

In 2016, Dataiku delivered Releases 3.0 and 3.1. Major new capabilities include H2O integration (through Sparkling Water); additional data sources (IBM Netezza, SAP HANA, Google BigQuery, and Microsoft Azure Data Warehouse); added support for Spark MLLib algorithms; performance improvements, and many other enhancements.

In October, Dataiku closed on a $14 million “A” round of venture capital. FirstMark Capital led the financing, with participation from Serena Capital.

DataRobot

DataRobot, a Boston-based startup founded by insurance industry veterans, offers an automated machine learning platform that combines built-in expertise with a test-and-learn approach.  Leveraging an open source back end, the company’s eponymous software searches through combinations of algorithms, pre-processing steps, features, transformations and tuning parameters to identify the best model for a particular problem.

cugrnjwxeaaking

The company has a team of Kaggle-winning data scientists and leverages this expertise to identify new machine learning algorithms, feature engineering techniques, and optimization methods. In 2016, DataRobot added several new capabilities to its product, including support for Hadoop deployment, deep learning with TensorFlow, reason codes that explain prediction, feature impact analysis, and additional capabilities for model deployment.

DataRobot also announced major alliances with Alteryx and Cloudera. Cloudera awarded the company its top-level certification: the software integrates with Spark, YARN, Cloudera Service Descriptors, and Cloudera Parcels.

Earlier in the year, DataRobot closed on $33 million in Series B financing. New Enterprise Associates led the round; Accomplice, Intel Capital, IA Ventures, Recruit Strategic Partners, and New York Life also participated.

Domino Data Lab

Domino Data Lab offers the Domino Data Science Platform (DDSP) a scalable collaboration environment that runs on-premises, in virtual private clouds or hosted on Domino’s AWS infrastructure.

collab-screen

DDSP provides data scientists with a shared environment for managing projects, scalable computing with a variety of open source and commercially licensed software, job scheduling and tracking, and publication through Shiny and Flask. Domino supports rollbacks, revision history, version control, and reproducibility.

In November, Domino announced that it closed a $10.5 million “A” round led by Sequoia Capital. Bloomberg Beta, In-Q-Tel, and Zetta Venture Partners also participated.

Fuzzy Logix

Fuzzy Logix markets DB Lytix, a library of more than eight hundred functions for machine learning and advanced analytics.  Functions run as database table functions in relational databases (Informix, MySQL, Netezza, ParAccel, SQL Server, Sybase IQ, Teradata Aster and Teradata Database) and in Hadoop through Hive.

Users invoke DB Lytix functions from SQL, R, through BI tools or from custom web interfaces.  Functions support a broad range of machine learning capabilities, including feature engineering, model training with a rich mix of supported algorithms, plus simulation and Monte Carlo analysis.  All functions support native in-database scoring.  The software is highly extensible, and Fuzzy Logix offers a team of well-qualified consultants and developers for custom applications.

In April, the company announced the availability of DB Lytix on Teradata Aster Analytics, a development that excited all three of the people who think Aster has legs.

H2O.ai

H2O.ai develops and supports H2O, the open source machine learning project I profiled in Part Two of this review. As I noted in Part Two, H2O.ai updated Sparkling Water, its Spark integration for Spark 2.0; released Steam, a model deployment framework, to production, and previewed Deep Water, an interface to GPU-accelerated back ends for deep learning.

maxresdefault

In 2016, H2O.ai added 3,200 enterprise organizations and over 43,000 users to its roster, bringing its open source community to over 8,000 enterprises and nearly 70,000 users worldwide. In the annual KDnuggets poll of data scientists, reported usage tripled. New customers include Kaiser Permanente, Progressive, Comcast, HCA, McKesson, Macy’s, and eBay.

KNIME

KNIME.com AG, a commercial enterprise based in Zurich, Switzerland, distributes the KNIME Analytics Platform under a GPL license with an exception permitting third parties to use the API for proprietary extensions. The KNIME Analytics Platform features a graphical user interface with a workflow metaphor.  Users build pipelines of tasks with drag-and-drop tools and run them interactively or in batch.

knime_screenshot

KNIME offers commercially licensed extensions for scalability, integration with data platforms, collaboration, and productivity. The company provides technical support for the extension software.

During the year, KNIME delivered two dot releases and three maintenance releases. The new features added to the open source edition in Releases 3.2 and 3.3 include Workflow Coach, a recommender based on community usage statistics; streaming execution; feature selection; ensembles of trees and gradient boosted trees; deep learning with DL4J, and many other enhancements. In June, KNIME launched the KNIME Cloud Analytics Platform on Microsoft Azure.

KNIME held its first Summit in the United States in September and announced the availability of an online training course available through O’Reilly Media.

RapidMiner

RapidMiner, Inc. of Cambridge, Massachusetts, develops and supports RapidMiner, an easy-to-use package for business analysis, predictive analytics, and optimization. The company launched in 2006 (under the corporate name of Rapid-I) to drive development, support, and distribution for the RapidMiner software project. The company moved its headquarters to the United States in 2013.

rm7_process

The desktop version of the software, branded as RapidMiner Studio, is available in free and commercially licensed editions.  RapidMiner also offers a commercially licensed Server edition, and Radoop, an extension that pushes processing down to Hive, Pig, Spark, and H2O.

RapidMiner introduced Release 7.x in 2016 with an updated user interface. Other enhancements in Releases 7.0 through 7.3 include a new data import facility, Tableau integration, parallel cross-validation, and H2O integration (featuring deep learning, gradient boosted trees and generalized linear models).

The company also introduced a feature called Single Process Pushdown. This capability enables RapidMiner users to supplement native Spark and H2O algorithms with RapidMiner pipelines for execution in Hadoop. RapidMiner supports Spark 2.0 as of Release 7.3.

In January 2016, RapidMiner closed a $16 million equity round led by Nokia Growth Partners. Ascent Venture Partners, Earlybird Venture Capital, Longworth Venture Partners, and OpenOcean also participated.

Skytree

Skytree Inc. develops and markets an eponymous commercially licensed software package for machine learning. Its founders launched the venture in 2012 to monetize an academic machine learning project (Georgia Tech’s FastLab).

figure_09a_tuning_results_chart_9_way_grid

The company landed an $18 million venture capital round in 2013 and hasn’t secured any new funding since then. (Read my comments under Alpine Data to see what that indicates.) Moreover, the underlying set of algorithms does not seem to have changed much since then, though Skytree has added and dropped several different add-ons and wrappers.

Users interact with the software through the Skytree Command Line Interface (CLI), Java and Python APIs or a browser-based GUI. Output includes explanations of the model in plain English. Skytree has a grid search feature for parameterization, which it trademarks as AutoModel, labels as “ground-breaking” and is attempting to patent. Analysts who don’t know anything about grid search think this is amazing.

In 2016, Skytree introduced a freemium edition, branded as Skytree Express. Hold out another six months and they’ll pay you to try it.

As is the case with Alpine Data, if you like Skytree’s technology wait for another funding round, or ask the company to provide evidence of positive cash flow.

How to Steal a Predictive Model

In the Proceedings of the 25th USENIX Security Symposium, Florian Tramer et. al. describe how to “steal” machine learning models via Prediction APIs. This finding won’t surprise anyone in the business, but Andy Greenberg at Wired and Thomas Claburn at The Register express their amazement.

Here’s how you “steal” a model:

— The prediction API tells you what variables the model uses; the packaging for a prediction API will say something like “submit X1 and X2, we will return a prediction for Y”; so you know that X1 and X2 are the variables in the model. The developer can try to fool you by directing you to submit a hundred variables even though it only needs two, but that’s not likely; most developers make the prediction API as parsimonious as possible.

— Use an experimental design to create test records with a range of values for each variable in the model. You won’t need many records; the number depends on the number of variables in the model and the degree of granularity you want.

— Now, ping the API with each test record and collect the results.

— With the data you just collected, you can estimate a model that approximates the model behind the prediction API.

The authors of the USENIX paper tested this approach with BigML and Amazon Machine Learning, succeeding in both cases. BigML objects; Amazon sleeps.

Legally, it may not be stealing. Model coefficients are intellectual property. If someone hacks into your model repository and steals the model file, or bribes one of your data scientists into providing the coefficients, that is theft. But while IP owners can assert a right over their actual code, it is much harder to assert a right to an application’s observable behavior. Reverse-engineering is legal in the U.S. and the European Union so long as the party that performs the work has legal possession of the relevant artifacts. If someone lawfully purchases predictions from your prediction API, they can reverse-engineer your model.

Restrictive licenses offer limited protection. Intellectual property owners can assert a claim against reverse-engineering if the predictions are under an end-user license that prohibits the practice. The fine print will please your Legal department, but is virtually impossible to enforce. Predictions, unlike other forms of intellectual property, aren’t watermarked; they’re just numbers.

Pricing plays a role. While it may be technically feasible to reverse-engineer a predictive model, it may be prohibitively expensive to do so. Models that predict behavior with financial implications, such as consumer credit risk models, are expensive. Arguably, the best way to prevent reverse-engineering is to charge a non-cancellable annual subscription fee for access to the API rather than selling predictions by the record. In any event, the risk of reverse-engineering should be a consideration in pricing.

Encryption may be necessary. If you want to do business with trusted parties over an open API, a hashing algorithm can scramble the prediction in a way that makes reverse-engineering impossible. Of course, the customer must be able to decrypt the prediction at their end of the transaction, with a key transmitted separately or from a common random seed.

Access control is key. The key point of the USENIX authors is that if your prediction API is available “in the wild,” you might as well call it an open source model because reverse-engineering is easy to do. Of course, if you are in the business of selling predictions, you already have some form of access control so you can meter usage and charge an account. Bad actors, however, have credit cards; so, if you are concerned about your predictive model’s IP, you’re going to have to establish tighter control over access to the prediction API.

Gartner’s 2016 MQ for Advanced Analytics Platforms

This is a revised and expanded version of a story that first appeared in the weekly roundup for February 15.

Gartner publishes its 2016 Magic Quadrant for Advanced Analytics Platforms.   You can get a free copy here from RapidMiner (registration required.)  The report is a muddle that mixes up products in different categories that don’t compete with one another, includes marginal players, excludes important startups and ignores open source analytics.

Other than that, it’s a fine report.

The advanced analytics category is much more complex than it used to be.  In the contemporary marketplace, there are at least six different categories of software for advanced analytics that are widely used in enterprises:

  • Analytic Programming Languages (e.g. R, SAS Programming Language)
  • Analytic Productivity Tools (e.g. RStudio, SAS Enterprise Guide)
  • Analytic Workbenches (e.g. Alteryx, IBM Watson Analytics, SAS JMP)
  • Expert Workbenches (e.g. IBM SPSS Modeler, SAS Enterprise Miner)
  • In-Database Machine Learning Engines (e.g. DBLytix, Oracle Data Mining)
  • Distributed Machine Learning Engines (e.g. Apache Spark MLlib, H2O)

Gartner appears to have a narrow notion of what an advanced analytics platform should be, and it ignores widely used software that does not fit that mold.  Among those evaluated by Gartner but excluded from the analysis: BigML, Business-Insight, Dataiku, Dato, H2O.ai, MathWorks, Oracle, Rapid Insight, Salford Systems, Skytree and TIBCO.

Gartner also ignores open source analytics, including only those vendors with at least $4 million in annual software license revenue.  That criterion excludes vendors with a commercial open source business model, like H2O.ai.  Gartner uses a similar criterion to exclude Hortonworks from its MQ for data warehousing, while including Cloudera and MapR.

Changes from last year’s report are relatively small.  Some detailed comments:

— Accenture makes the analysis this year, according to Gartner, because it acquired Milan-based i4C Analytics, a tiny little privately held company based in Milan, Italy.  Accenture rebranded the software assets as the Accenture Analytics Applications Platform, which Accenture positions as a platform for custom solutions.  This is not at all surprising, since Accenture is a consulting firm and not a software vendor, but it’s interesting to note that Accenture reports no revenue at all from software licensing;  hence, it can’t possibly satisfy Gartner’s inclusion criteria for the MQ.  The distinction between software and services is increasingly muddy, but if Gartner includes one services provider on the analytics MQ it should include them all.

Alpine Data Labs declines a lot in “Ability to Deliver,” which makes sense since they appear to be running out of money (*).  Gartner characterizes Alpine as “running analytic workflows natively within Hadoop”, which is only partly true.  Alpine was originally developed to run on MPP databases with table functions (such as Greenplum and Netezza), and has ported some of its functions to Hadoop.  The company has a history with Greenplum Pivotal and EMC Dell, and most existing customers use the product with Greenplum Database, Pivotal Hadoop, Hawq and MADlib, which is great if you use all of those but otherwise not.  Gartner rightly notes that “the depth of choice of algorithms may be limited for some users,” which is spot on — anyone not using Alpine with Hawq and MADlib.

(*) Of course, things aren’t always what they appear to be.  Joe Otto, Alpine CEO, contacted me to say that Alpine has a year’s worth of expenses in the bank, and hasn’t done any new venture rounds since 2013 “because they haven’t needed to do so.”  Joe had no explanation for Alpine’s significantly lower rating on both dimensions in Gartner’s MQ, attributing the change to “bias”.  He’s right in pointing out that Gartner’s analysis defies logic.

Alteryx declines a little, which is surprising since its new release is strong and the company just scored a pile of venture cash.  Gartner notes that Alteryx’ scores are up for customer satisfaction and delivering business value, which suggests that whoever it is at Gartner that decides where to position the dots on the MQ does not read the survey results.  Gartner dings Alteryx for not having native visualization capabilities like Tableau, Qlik or PowerBI, a ridiculous observation when you consider that not one of the other vendors covered in this report offers visualization capabilities like Tableau, Qlik or PowerBI.

Angoss improves a lot, moving from Niche to Challenger, largely on the basis of its WPL-based SAS integration and better customer satisfaction.  Data prep was a gap for Angoss, so the WPL partnership is a positive move.

— Dell: Arguing that Dell has “executed on an ambitious roadmap during the past year”, Gartner moves Dell into the Leaders quadrant.   That “execution” is largely invisible to everyone else, as the product seems to have changed little since Dell acquired Statistica, and I don’t think too many people are excited that the product interfaces with Boomi.  Customer satisfaction has declined and pricing is a mess, but Gartner is all giggly about Boomi, Kitenga and Toad.  Gartner rightly cautions that software isn’t one of Dell’s core strengths, and the recent EMC acquisition “raises questions” about the future of software at Dell.  Which raises questions about why Gartner thinks Dell qualifies as a Leader in the category.

FICO fades for no apparent reason.  I’m guessing they didn’t renew their subscription.

IBM stays at about the same position in the MQ.  Gartner rightly notes the “market confusion” about IBM’s analytics products, and dismisses yikyak about cognitive computing.  Recently, I spent 30 minutes with one of the 443 IBM vice presidents responsible for analytics — supposedly, he’s in charge of “all analytics” at IBM — and I’m still as confused as Gartner, and the market.

— KNIME was a Leader last year and remains a Leader, moving up a little.  Gartner notes that many customers choose KNIME for its cost-benefit ratio, which is unsurprising since the software is free.  Once again, Gartner complains that KNIME isn’t as good as Tableau and Qlik for visualization.

Lavastorm makes it to the MQ this year, for some reason.  Lavastorm is an ETL and data blending tool that does not claim to offer the native predictive analytics that Gartner says are necessary for inclusion in the MQ.

Megaputer, a text mining vendor, makes it to the MQ for the second year running despite being so marginal that they lack a record in Crunchbase.  Gartner notes that “Megaputer scores low on viability and visibility and there is a lack of awareness of the company outside of text analytics in the advanced analytics market.”  Just going out on a limb, here, Mr. Gartner, but maybe that’s your cue to drop them from the MQ, or cover them under text mining.

Microsoft gets Gartner’s highest scores on Completeness of Vision on the strength of Azure Machine Learning (AML) and Cortana Analytics Suite.  Some customers aren’t thrilled that AML is only available in the cloud, presumably because they want hackers to steal their data from an on-premises system, where most data breaches happen.  Microsoft’s hybrid on-premises cloud should render those arguments moot.  Existing customers who use SQL Server Analytic Services are less than thrilled with that product.

Predixion Software improves on “Completeness of Vision” because it can “deploy anywhere” according to Gartner.  Wut?  Anywhere you can run Windows.

Prognoz returns to the MQ for another year and, like Megaputer, continues to inspire WTF? reactions from folks familiar with this category.  Primarily a BI tool with some time-series and analytics functionality included, Prognoz appears to lack the native predictive analytics capabilities that Gartner says are minimally required. 

RapidMiner moves up on both dimensions.  Gartner recognizes the company’s “Wisdom of Crowds” feature and the recent Series C funding, but neglects to note RapidMiner’s excellent Hadoop and Spark integration.

SAP stays at pretty much the same place in the MQ.  Gartner notes that SAP has the lowest scores in customer satisfaction, analytic support and sales relationship, which is about what you would expect when an ankle-biter like KXEN gets swallowed by a behemoth like SAP, where analytics go to die.

SAS declines slightly in Ability to Deliver.  Gartner notes that SAS’ licensing model, high costs and lack of transparency are a concern.  Gartner also notes that while SAS has a loyal customer base whose members refer to it as the “gold standard” in advanced analytics, SAS also has the highest percentage of customers who have experienced challenges or issues with the software.

2015: Predictions for Big Analytics

First, a review of last year’s predictions:

(1) Apache Spark matures as the preferred platform for advanced analytics in Hadoop.

At the New York Strata/Hadoop World conference in October, if you took a drink each time a speaker said “Spark”, you would struggle to make it past noon.  At my lunch table, every single person said his company is currently evaluating Spark.  There are few alternatives to Spark for advanced analytics in Hadoop, and the platform has arrived.

(2) “Co-location” will be the latest buzzword.

Few people use the word “co-location”, but thanks to YARN, vendors like SAS and Skytree are now able to honestly position their products as running “inside” Hadoop.  YARN has changed the landscape for analytics in Hadoop, so that products that interface through MapReduce are obsolete.

(3) Graph engines will be hot.

Graph engines did not take off in 2014.  Development on Apache Giraph has flatlined, and open source GraphLab is quiet as well. Apache Spark’s GraphX is the only graph engine for Hadoop under active development; the Spark team recently promoted GraphX from Alpha to production.  However, with just 10 out of 132 contributors working on GraphX in Release 1.2, the graph engine is relatively quiet compared to the SQL, Machine Learning and Streaming modules.

(4) R approaches parity with SAS in the commercial job market.

As of early 2014, when Bob Muenchin last updated his job market statistics, SAS led R in job postings, but R was closing the gap rapidly.

Linda Burtch of Burtch Works is the nation’s leading executive recruiter for quants and data scientists.  I asked Linda what analytic languages hiring managers seek when they hire quants.  “My clients are still more frequently asking for SAS, although many more are now asking for either SAS or R,” she says.   “I also recommend to my clients who ask specifically for SAS skills to be open to those using R, and many will agree after the suggestion. ”

 (5) SAP emerges as the company most likely to buy SAS.

After much hype about the partnership in late 2013, SAS and SAP issued not a single press release in 2014.  The dollar’s strength against the Euro makes it less likely that SAP will buy SAS.

(6) Competition heats up for “easy to use” predictive analytics.

Software companies target the “easy to use” analytics market because it’s larger than the expert market and because expert analysts rarely switch.  Alpine, Alteryx, and Rapid Miner all gained market presence in 2014; Dell’s acquisition of Statsoft gives that company the deep pockets they need for a makeover.  In easy to use cloud analytics, StatWing has added functionality, and IBM Watson Analytics emerged from beta.

Four out of six ain’t bad.  Now looking ahead:

(1) Apache Spark usage will explode.

While interest in Spark took off in 2014, relatively few people actually use the platform, which appeals primarily to hard-core data scientists.  That will change in 2015, for several reasons:

  • The R interface planned for release in Q1 opens the platform to a large and engaged community of users
  • Alteryx, Alpine and other easy to use analytics tools currently support or plan to support Spark RDDs as a data source
  • Databricks Cloud offers an easy way to spin up a Spark cluster

As a result of these and other innovations, there will be many more Spark users in twelve months than there are today.

(2) Analytics in the cloud will take off.

Yes, I know — some companies are reluctant to put their “sensitive” data in the cloud.  And yet, all of the top ten data breaches in 2014 defeated an on-premises security system.  Organizations are waking up to the fact that management practices are the critical factor in data security — not the physical location of the data.

Cloud is eating the analytics world for three big reasons:

  • Analytic workloads tend to be lumpy and difficult to predict
  • Analytic projects often need to get up and running quickly
  • Analytic service providers operate in a variable cost world, with limited capital for infrastructure

Analytic software options available in the Amazon Marketplace are increasing rapidly; current options include Revolution R, BigML and YHat, among others.  For the business user, StatWing and IBM Watson Analytics provide compelling independent cloud-based platforms.

Even SAS seeks to jump on the Cloud bandwagon, touting its support for Amazon Web Services.  Cloud devotees may be disappointed, however, to discover that SAS does not offer elastic pricing for AWS,  lacks a native access engine for RedShift, and does not support its Hadoop interface with EMR.

(3) Python will continue to gain on R as the preferred open source analytics platform.

The Python versus R debate is at least as contentious as the SAS versus R debate, and equally tiresome.  As a general-purpose scripting language, Python’s total user base is likely larger than R’s user base.  For analytics, however, the evidence suggests that R still leads Python, but that Python is catching up.  According to a recent poll by KDNuggets, more people switch from R to Python than the other way ’round.

Both languages have their virtues. The sheer volume of analytic features in R is much greater than Python, though in certain areas of data science (such as Deep Learning) Python appears to have the edge.  Devotees of each language claim that it is easier to use than the other, but the two languages are at rough parity by objective measures.

Python has two key advantages over R.  As a general-purpose language, it is a better tool for application development; hence, for embedded analytic applications (such as recommendation engines, decision engines and online scoring), Python gets the nod over R.  Second, Python’s open source license is less restrictive than the R license, which makes it a better choice for commercial use.  There are provisions in the R license that scare the pants off some company lawyers, rightly or wrongly.

(4) H2O will continue to win respect and customers in the Big Analytics market.

If you’re interested in scalable analytics but haven’t checked out H2O, you should.  H2O is a rapidly growing true open source project for distributed analytics; it runs in clusters, in Hadoop and in Amazon Cloud; offers an excellent R interface together with Java and Scala APIs; and is accessible from Tableau.  H2O supports a rich and growing machine learning library that includes Deep Learning and the only available distributed Gradient Boosting algorithm on the market today.

While the software is freely available, H2O offers support and services for an attractive price.  The company currently claims more than two thousand users, including reference customers Cisco, eBay, Nielsen and Paypal.

(5) SAS customers will continue to seek alternatives.

SAS once had an almost religious loyalty from its customers.  This is no longer the case; in a recent report published by Gartner, surveyed executives reported they are more likely to discontinue use of SAS than any other business intelligence software.  While respondents rated SAS above average on sales experience and average on product quality, SAS fared poorly in measures of usability and ease of integration.  While the Gartner survey does not address pricing, it’s fair to say that no vendor can command premium prices without an outstanding product.

While few enterprises plan to pull the plug on SAS entirely, many are limiting growth of the SAS footprint and actively developing alternatives.  This is especially marked in the analytic services industry, which tends to attract people with the skills to use Python or R, and where cost control is important.  Even among big banks and pharma companies, though, SAS user headcount is declining.