Spark is the Future of Analytics

At the 2016 Spark Summit, Gartner Research Director Nick Heudecker asked: Is Spark the Future of Data Analysis?  It’s an interesting question, and it requires a little parsing. Nobody believes that Spark alone is the future of data analysis, even its most ardent proponents. A better way to frame the question: Does Spark have a role in the future of analytics? What is that role?

Unfortunately, Heudecker didn’t address the question but spent the hour throwing shade at Spark.

Spark is overhyped! He declared. His evidence? This:


One might question an analysis that equates real things like optimization with fake things like “Citizen Data Science.” Gartner’s Hype Cycle by itself proves nothing; it’s a conceptual salad, with neither empirical foundation nor predictive power.

If you want to argue that Spark is overhyped, produce some false or misleading claims by project principals, or documented cases where the software failed to work as claimed. It’s possible that such cases exist. Personally, I don’t know of any, and neither does Nick Heudecker, or he would have included them in his presentation.

Instead, he cited a Gartner survey showing that organizations don’t use Spark and Flink as much as they use other tools for data analysis. From my notes, here are the percentages:

  • EDW: 57%
  • Cloud: 44%
  • Hadoop: 42%
  • Stat Packages: 32%
  • Spark or Flink: 9%
  • Graph Databases: 8%

That 42% figure for Hadoop is interesting. In 2015, Gartner concern-trolled the tech community, trumpeting the finding that “only” 26% of respondents in a survey said they were “deploying, piloting or experimenting with Hadoop.” So — either Hadoop adoption grew from 26% to 42% in a year, or Gartner doesn’t know how to do surveys.

In any event, it’s irrelevant; statistical packages have been available for 40 years, EDWs for 25, Spark for 3. The current rate of adoption for a project in its youth tells you very little about its future. It’s like arguing that a toddler is cognitively challenged because she can’t do integral calculus without checking the Wolfram app on her iPad.

Heudecker closed his presentation with the pronouncement that he had no idea whether or not Spark is the future of data analysis, and bolted the venue faster than a jackrabbit on Ecstasy. Which begs the question: why pay big bucks for analysts who have no opinion about one of the most active projects in the Big Data ecosystem?

Here are eight reasons why Spark has a central role in the future of analytics.

(1) Nearly everyone who uses Hadoop will use Spark.

If you believe that 42% of enterprises use Hadoop, you must believe that 41.9% will use Spark. Every Hadoop distribution includes Spark. Hive and Pig run on Spark. Hadoop early adopters will gradually replace existing MapReduce applications and build most new applications in Spark. Late adopters may never use MapReduce.

The only holdouts for MapReduce will be those who want their analysis the way they want their barbecue: low and slow.

Of course, Hadoop adoption isn’t static. Forrester’s Mike Gualtieri argues that 100% of enterprises will use Hadoop within a few years.

(2) Lots of people who don’t use Hadoop will use Spark.

For Hadoop users, Spark is a fast replacement for MapReduce. But that’s not all it is. Spark is also a general-purpose data processing environment for advanced analytics. Hadoop has baggage that data science teams don’t need, so it’s no surprise to see that most Spark users aren’t using it with Hadoop. One of the key advantages of Spark is that users aren’t tied to a particular storage back end, but can choose from many different options. That’s essential in real-world data science.

(3) For scalable open source data science, Spark is the only game in town.

If you want to argue that Spark has no future, you’re going to have to name an alternative. I’ll give you a minute to think of something.

Time’s up.

You could try to approximate Spark’s capabilities with a collection of other projects: for example, you could use Presto for SQL, H2O for machine learning, Storm for streaming, and Giraph for graph analysis. Good luck pulling those together. was one of the first vendors to build an interface to Spark because even if you want to use H2O for machine learning, you’re still going to use Spark for data wrangling.

“What about Flink?” you ask. Well, what about it? Flink may have a future, too, if anyone ever supports it other than ten guys in a loft on the Tempelhofer Ufer. Flink’s event-based runtime seems well-suited for “pure” streaming applications, but that’s low-value bottom-of-the-stack stuff. Flink’s ML library is still pretty limited, and improving it doesn’t appear to be a high priority for the Flink team.

(4) Data scientists who work exclusively with “small data” still need Spark.

Data scientists satisfy most business requests for insight with small datasets that can fit into memory on a single machine. Even if you measure your largest dataset in gigabytes, however, there are two ways you need Spark: to create your analysis dataset and to parallelize operations.

Your analysis dataset may be small, but it comes from a larger pool of enterprise data. Unless you have servants to pull data for you, at some point you’re going to have to get your hands dirty and deal with data at enterprise scale. If you are lucky, your organization has nice clean data in a well-organized data warehouse that has everything anyone will ever need in a single source of truth.

Ha ha! Just kidding. Single sources of truth don’t exist, except in the wildest fantasies of data warehouse vendors. In reality, you’re going to muck around with many different sources and integrate your analysis data on the fly. Spark excels at that.

For best results, machine learning projects require hundreds of experiments to identify the best algorithm and optimal parameters. If you run those tests serially, it will take forever; distribute them across a Spark cluster, and you can radically reduce the time needed to find that optimal model.

(5) The Spark team isn’t resting on its laurels.

Over time, Spark has evolved from a research project for scalable machine learning to a general purpose data processing framework. Driven by user feedback, Spark has added SQL and streaming capabilities, introduced Python and R APIs, re-engineered the machine learning libraries, and many other enhancements.

Here are some projects under way to improve Spark:

— Project Tungsten, an ongoing effort to optimize CPU and memory utilization.

— A stable serialization format (possibly Apache Arrow) for external code integration.

— Integration with deep learning frameworks, including TensorFlow and Intel’s new BigDL library.

— A cost-based optimizer for Spark SQL.

— Improved interfaces to data sources.

— Continuing improvements to the Python and R APIs.

Performance improvement is an ongoing mission; for selected operations, Spark 2.0 runs 10X faster than Spark 1.6.

(6) More cool stuff is on the way.

Berkeley’s AMPLab, the source of Spark, Mesos, and Tachyon/Alluxio, is now RISELab. There are four projects under way at RISELab that will extend Spark capabilities:

Clipper is a prediction serving system that brokers between machine learning frameworks and end-user applications. The first Alpha release, planned for mid-April 2017, will serve scikit-learn, Spark ML and Spark MLLib models, and arbitrary Python functions.

Drizzle, an execution engine for Apache Spark, uses group scheduling to reduce latency in streaming and iterative operations. Lead developer Shivaram Venkataraman has filed a design document to implement this approach in Spark.

Opaque is a package for Spark SQL that uses Intel SGX trusted hardware to deliver strong security for DataFrames. The project seeks to enable analytics on sensitive data in an untrusted cloud, with data encryption and access pattern hiding.

Ray is a distributed execution engine for Spark designed for reinforcement learning.

Three Apache projects in the Incubator build on Spark:

— Apache Hivemall is a scalable machine learning library implemented as a collection of Hive UDFs designed to run on Hive, Pig or Spark SQL with MapReduce, Tez or Spark.

— Apache PredictionIO is a machine learning server built on top of an open source stack, including Spark, HBase, Spray, and Elasticsearch.

— Apache SystemML is a library of machine learning algorithms that run on Spark and MapReduce, originally developed by IBM Research.

MIT’s CSAIL lab is working on ModelDB, a system to manage machine learning models. ModelDB extracts and stores model artifacts and metadata, and makes this data available for easy querying and visualization. The current release supports Spark ML and scikit-learn.

(7) Commercial vendors are building on top of Spark.

The future of analytics is a hybrid stack, with open source at the bottom and commercial software for business users at the top. Here is a small sample of vendors who are building easy-to-use interfaces atop Spark.

Alpine Data provides a collaboration environment for data science and machine learning that runs on Spark (and other platforms.)

AtScale, an OLAP on Big Data solution, leverages Spark SQL and other SQL engines, including Hive, Impala, and Presto.

Dataiku markets Data Science Studio, a drag-and-drop data science workflow tool with connectors for many different storage platforms, scikit-learn, Spark ML and XGboost.

StreamAnalytix, a drag-and-drop platform for real-time analytics, supports Spark SQL and Spark Streaming, Apache Storm, and many different data sources and sinks.

Zoomdata, an early adopter of Spark, offers an agile visualization tool that works with Spark Streaming and many other platforms.

All of the leading agile BI tools, including Tableau, Qlik, and PowerBI, support Spark. Even stodgy old Oracle’s Big Data Discovery tool runs on Spark in Oracle Cloud.

(8) All of the leading commercial advanced analytics platforms use Spark.

All of them, including SAS, a company that embraces open source the way Sylvester the Cat embraces a skunk. SAS supports Spark in SAS Data Loader for Hadoop, one of SAS’ five different Hadoop architectures. (If you don’t like SAS architecture, wait six months for another.)

Magic Quadrant for Advanced Analytics Platforms, 2016

— IBM embraces Spark like Romeo embraced Juliet, hopefully with a better ending. IBM contributes heavily to the Spark project and has rebuilt many of its software products and cloud services to use Spark.

— KNIME’s Spark Executor enables users of the KNIME Analytics Platform to create and execute Spark applications. Through a combination of visual programming and scripting, users can leverage Spark to access data sources, blend data, train predictive models, score new data, and embed Spark applications in a KNIME workflow.

— RapidMiner’s Radoop module supports visual programming across SparkR, PySpark, Pig, and HiveQL, and machine learning with SparkML and H2O.

— Statistica, which is no longer part of Dell, offers Spark integration in its Expert and Enterprise editions.

— Microsoft supports Spark in AzureHD, and it has rebuilt Microsoft R Server’s Hadoop integration to leverage Spark as well as MapReduce. VentureBeat reports that Databricks will offer its managed service for Spark on Microsoft Azure later this year.

— SAP, another early adopter of Spark, supports Vora, a connector to SAP HANA.

You get the idea. Spark is deeply embedded in the ecosystem, and it’s foolish to argue that it doesn’t play a central role in the future of analytics.

The Year in Machine Learning (Part Four)

This is the fourth installment in a four-part review of 2016 in machine learning and deep learning.

— Part One covered Top Trends in the field, including concerns about bias, interpretability, deep learning’s explosive growth, the democratization of supercomputing, and the emergence of cloud machine learning platforms.

— Part Two surveyed significant developments in Open Source machine learning projects, such as R, Python, Spark, Flink, H2O, TensorFlow, and others.

— Part Three reviewed the machine learning and deep learning initiatives of Big Tech Brands, industry leaders with significant budgets for software development and marketing.

In Part Four, I profile eleven startups in the machine learning and deep learning space. A search for “machine learning” in Crunchbase yields 2,264 companies. This includes companies, such as MemSQL, who offer absolutely no machine learning capability but hype it anyway because Marketing; it also includes application software and service providers, such as Zebra Medical Imaging, who build machine learning into the services they provide.

All of the companies profiled in this post provide machine learning tools as software or services for data scientists or for business users. Within that broad definition, the firms are highly diverse:

Continuum Analytics, Databricks, and drive open source projects (Anaconda, Apache Spark, and H2O, respectively) and deliver commercial support.

Alpine Data, Dataiku, and Domino Data Lab offer commercially licensed collaboration tools for data science teams. All three run on top of an open source platform.

KNIME and RapidMiner originated in Europe, where they have large user communities. Both combine a business user interface with the ability to work with Big Data platforms.

Fuzzy Logix and Skytree provide specialized capabilities primarily for data scientists.

DataRobot delivers a fully automated workflow for predictive analytics that appeals to data scientists and business users. It runs on an open source platform.

Four companies deserve an “honorable mention” but I haven’t profiled them in depth:

— Two startups, BigML and SkyMind, are still in seed funding stage. I don’t profile them below, but they are worth watching. BigML is a cloud-based machine learning service; SkyMind drives the DL4J open source project for deep learning.

— Two additional companies aren’t startups because they’ve been in business for more than thirty years. Salford Systems developed the original software for CART and Random Forests; the company has added more techniques to its suite over time and has a loyal following. Statistica, recently jettisoned by Dell, delivers a statistical package with broad capabilities; the company consistently performs well in user satisfaction surveys.

I’d like to take a moment to thank those who contributed tips and ideas for this series, including Sri Ambati, Betty Candel, Leslie Miller, Bob Muenchen, Thomas Ott, Peter Prettenhofer, Jesus Puente, Dan Putler, David Smith, and Oliver Vagner.

Alpine Data

In 2016, the company formerly known as Alpine Data Labs changed its name and CEO. Alpine dropped the “Labs” from its brand — I guess they didn’t want to be confused with companies that test stool samples — so now it’s just Alpine Data. And, ex-CEO Joe Otto is now an “Advisor,” replaced by Dan Udoutch, a “seasoned executive” with 30+ years of experience in business and zero years of experience in machine learning or advanced analytics. The company also dropped its CFO and head of Sales during the year, presumably because the investors were extremely happy with Alpine’s business results.

Originally built to run in Greenplum database, the company ported some of its algorithms to MapReduce in early 2013. Riding a wave of Hadoop buzz, Alpine closed on a venture round in November 2013, just in time for everyone to realize that MapReduce sucks for machine learning. The company quickly turned to Spark — Databricks certified Alpine on Spark in 2014 — and has gradually ported its analytics operators to the new framework.


It seems that rebuilding on Spark has been a bit of a slog because Alpine hasn’t raised a fresh round of capital since 2013. As a general rule, startups that make their numbers get fresh rounds every 12-24 months; companies that don’t get fresh funding likely aren’t making their numbers. Investors aren’t stupid and, like the dog that did not bark, a venture capital round that does not happen says a lot about a company’s prospects.

In product news, the company announced Chorus 6, a major release, in May, and Chorus 6.1 in September. Enhancements in the new releases include:

— Integration with Jupyter notebooks.

— Additional machine learning operators.

— Spark auto-tuning. Chorus pushes processing to Spark, and Alpine has developed an optimizer to tune the generated Spark code.

PFA support for model export. This is excellent, a cutting edge feature.

— Runtime performance improvements.

— Tweaks to the user experience.

Lawrence Spracklen, Alpine’s VP of Engineering, will speak about Spark auto-tuning at the Spark Summit East in Boston.

Prospective users and customers should look for evidence that Alpine is a viable company, such as a new funding round, or audited financials that show positive cash flow.

Continuum Analytics

Continuum Analytics develops and supports Anaconda, an open source Python distribution for data science. The core Anaconda bundle includes Navigator, a desktop GUI that manages applications, packages, environments and channels; 150 Python packages that are widely used in data science; and performance optimizations. Continuum also offers commercially licensed extensions to Anaconda for scalability, high performance and ease of use.


Anaconda 2.5, announced in February, introduced performance optimization with the Intel® Math Kernel Library. Beginning with this release, Continuum bundled Anaconda with Microsoft R Open, an enhanced free R distribution.

In 2016, Continuum introduced two major additions to the Anaconda platform:

Anaconda Enterprise Notebooks, an enhanced version of Jupyter notebooks

Anaconda Mosaic, a tool for cataloging heterogeneous data

The company also announced partnerships with Cloudera, Intel, and IBM. In September, Continuum disclosed $4 million in equity financing. The company was surprisingly quiet about the round — there was no press release — possibly because it was undersubscribed.

Continuum’s AnacondaCon 2017 conference meets in Austin February 7-9.


Databricks leads the development of Apache Spark (profiled in Part Two of this review) and offers a cloud-based managed service built on Spark. The company also offers training, certification, and organizes the Spark Summits.

The team that originally developed Spark founded Databricks in 2013. Company employees continue to play a key role in Apache Spark, holding a plurality of the seats on the Project Management Committee and contributing more new code to the project than any other company.


In 2016, Databricks added a dashboarding tool and a RESTful interface for job and cluster management to its core managed service. The company made major enhancements to the Databricks security framework, completed SOC 2 Type 1 certification for enterprise security, announced HIPAA compliance and availability in Amazon Web Services’ GovCloud for sensitive data and regulated workloads.

Databricks also launched a free Community edition; a five-part series of free MOOCs; completed its annual survey of the Spark user community, and organized three Spark Summits.

In December, Databricks announced a $60 million “C” round of venture capital. New Enterprise Associates led the round; Andreessen Horowitz participated.


Dataiku develops and markets Data Science Studio (DSS), a workflow and collaboration environment for machine learning and advanced analytics. Users interact with the software through a drag-and-drop interface; DSS pushes processing down to Hadoop and Spark. The product includes connectors to a wide variety of file systems, SQL platforms, cloud data stores and NoSQL databases.


In 2016, Dataiku delivered Releases 3.0 and 3.1. Major new capabilities include H2O integration (through Sparkling Water); additional data sources (IBM Netezza, SAP HANA, Google BigQuery, and Microsoft Azure Data Warehouse); added support for Spark MLLib algorithms; performance improvements, and many other enhancements.

In October, Dataiku closed on a $14 million “A” round of venture capital. FirstMark Capital led the financing, with participation from Serena Capital.


DataRobot, a Boston-based startup founded by insurance industry veterans, offers an automated machine learning platform that combines built-in expertise with a test-and-learn approach.  Leveraging an open source back end, the company’s eponymous software searches through combinations of algorithms, pre-processing steps, features, transformations and tuning parameters to identify the best model for a particular problem.


The company has a team of Kaggle-winning data scientists and leverages this expertise to identify new machine learning algorithms, feature engineering techniques, and optimization methods. In 2016, DataRobot added several new capabilities to its product, including support for Hadoop deployment, deep learning with TensorFlow, reason codes that explain prediction, feature impact analysis, and additional capabilities for model deployment.

DataRobot also announced major alliances with Alteryx and Cloudera. Cloudera awarded the company its top-level certification: the software integrates with Spark, YARN, Cloudera Service Descriptors, and Cloudera Parcels.

Earlier in the year, DataRobot closed on $33 million in Series B financing. New Enterprise Associates led the round; Accomplice, Intel Capital, IA Ventures, Recruit Strategic Partners, and New York Life also participated.

Domino Data Lab

Domino Data Lab offers the Domino Data Science Platform (DDSP) a scalable collaboration environment that runs on-premises, in virtual private clouds or hosted on Domino’s AWS infrastructure.


DDSP provides data scientists with a shared environment for managing projects, scalable computing with a variety of open source and commercially licensed software, job scheduling and tracking, and publication through Shiny and Flask. Domino supports rollbacks, revision history, version control, and reproducibility.

In November, Domino announced that it closed a $10.5 million “A” round led by Sequoia Capital. Bloomberg Beta, In-Q-Tel, and Zetta Venture Partners also participated.

Fuzzy Logix

Fuzzy Logix markets DB Lytix, a library of more than eight hundred functions for machine learning and advanced analytics.  Functions run as database table functions in relational databases (Informix, MySQL, Netezza, ParAccel, SQL Server, Sybase IQ, Teradata Aster and Teradata Database) and in Hadoop through Hive.

Users invoke DB Lytix functions from SQL, R, through BI tools or from custom web interfaces.  Functions support a broad range of machine learning capabilities, including feature engineering, model training with a rich mix of supported algorithms, plus simulation and Monte Carlo analysis.  All functions support native in-database scoring.  The software is highly extensible, and Fuzzy Logix offers a team of well-qualified consultants and developers for custom applications.

In April, the company announced the availability of DB Lytix on Teradata Aster Analytics, a development that excited all three of the people who think Aster has legs. develops and supports H2O, the open source machine learning project I profiled in Part Two of this review. As I noted in Part Two, updated Sparkling Water, its Spark integration for Spark 2.0; released Steam, a model deployment framework, to production, and previewed Deep Water, an interface to GPU-accelerated back ends for deep learning.


In 2016, added 3,200 enterprise organizations and over 43,000 users to its roster, bringing its open source community to over 8,000 enterprises and nearly 70,000 users worldwide. In the annual KDnuggets poll of data scientists, reported usage tripled. New customers include Kaiser Permanente, Progressive, Comcast, HCA, McKesson, Macy’s, and eBay.

KNIME AG, a commercial enterprise based in Zurich, Switzerland, distributes the KNIME Analytics Platform under a GPL license with an exception permitting third parties to use the API for proprietary extensions. The KNIME Analytics Platform features a graphical user interface with a workflow metaphor.  Users build pipelines of tasks with drag-and-drop tools and run them interactively or in batch.


KNIME offers commercially licensed extensions for scalability, integration with data platforms, collaboration, and productivity. The company provides technical support for the extension software.

During the year, KNIME delivered two dot releases and three maintenance releases. The new features added to the open source edition in Releases 3.2 and 3.3 include Workflow Coach, a recommender based on community usage statistics; streaming execution; feature selection; ensembles of trees and gradient boosted trees; deep learning with DL4J, and many other enhancements. In June, KNIME launched the KNIME Cloud Analytics Platform on Microsoft Azure.

KNIME held its first Summit in the United States in September and announced the availability of an online training course available through O’Reilly Media.


RapidMiner, Inc. of Cambridge, Massachusetts, develops and supports RapidMiner, an easy-to-use package for business analysis, predictive analytics, and optimization. The company launched in 2006 (under the corporate name of Rapid-I) to drive development, support, and distribution for the RapidMiner software project. The company moved its headquarters to the United States in 2013.


The desktop version of the software, branded as RapidMiner Studio, is available in free and commercially licensed editions.  RapidMiner also offers a commercially licensed Server edition, and Radoop, an extension that pushes processing down to Hive, Pig, Spark, and H2O.

RapidMiner introduced Release 7.x in 2016 with an updated user interface. Other enhancements in Releases 7.0 through 7.3 include a new data import facility, Tableau integration, parallel cross-validation, and H2O integration (featuring deep learning, gradient boosted trees and generalized linear models).

The company also introduced a feature called Single Process Pushdown. This capability enables RapidMiner users to supplement native Spark and H2O algorithms with RapidMiner pipelines for execution in Hadoop. RapidMiner supports Spark 2.0 as of Release 7.3.

In January 2016, RapidMiner closed a $16 million equity round led by Nokia Growth Partners. Ascent Venture Partners, Earlybird Venture Capital, Longworth Venture Partners, and OpenOcean also participated.


Skytree Inc. develops and markets an eponymous commercially licensed software package for machine learning. Its founders launched the venture in 2012 to monetize an academic machine learning project (Georgia Tech’s FastLab).


The company landed an $18 million venture capital round in 2013 and hasn’t secured any new funding since then. (Read my comments under Alpine Data to see what that indicates.) Moreover, the underlying set of algorithms does not seem to have changed much since then, though Skytree has added and dropped several different add-ons and wrappers.

Users interact with the software through the Skytree Command Line Interface (CLI), Java and Python APIs or a browser-based GUI. Output includes explanations of the model in plain English. Skytree has a grid search feature for parameterization, which it trademarks as AutoModel, labels as “ground-breaking” and is attempting to patent. Analysts who don’t know anything about grid search think this is amazing.

In 2016, Skytree introduced a freemium edition, branded as Skytree Express. Hold out another six months and they’ll pay you to try it.

As is the case with Alpine Data, if you like Skytree’s technology wait for another funding round, or ask the company to provide evidence of positive cash flow.