The Year in Machine Learning (Part Two)

This is the second installment in a four-part review of 2016 in machine learning and deep learning. Part One, here, covered general trends. In Part Two, we review the year in open source machine learning and deep learning projects. Parts Three and Four will cover commercial machine learning and deep learning software and services.

There are thousands of open source projects on the market today, and we cannot cover them all. We’ve selected the most relevant projects based on usage reported in surveys of data scientists, as well as development activity recorded in OpenHub.  In this post, we limit the scope to projects with a non-profit governance structure, and those offered by commercial ventures that do not also provide licensed software. Part Three will include software vendors who offer open source “community” editions together with commercially licensed software.

R and Python maintained their leadership as primary tools for open data science. The Python versus R debate continued amid an emerging consensus that data scientists should consider learning both. R has a stronger library of statistics and machine learning techniques and is agiler when working with small data. Python is better suited to developing applications, and the Python open source license is less restrictive for commercial application development.

Not surprisingly, deep learning frameworks were the most dynamic category, with TensorFlow, Microsoft Cognitive, and MXNet taking leadership away from more mature tools like Caffe and Torch. It’s remarkable that deep learning tools introduced as recently as 2014 now seem long in the tooth.

The R Project

The R user community continued to expand in 2016. It ranked second only to SQL in the 2016 O’Reilly Data Science Salary Survey; first in the KDNuggets poll; and first in the Rexer survey. R ranked fifth in the IEEE Spectrum ranking.

R functionality grew at a rapid pace. In April, Microsoft’s Andrie de Vries reported that there were more than 8,000 packages in CRAN, R’s primary repository for contributed packages. As of mid-December, there are 9,737 packages.  Machine learning packages in CRAN continued to grow in number and functionality.

The R Consortium, a Collaborative Project of the Linux Foundation, made some progress in 2016. IBM and ESRI joined the Consortium, whose membership now also includes Alteryx, Avant, DataCamp, Google, Ketchum Trading, Mango Solutions, Microsoft, Oracle, RStudio, and TIBCO. There are now three working groups and eight funded projects.

Hadley Wickham had a good year. One of the top contributors to the R project, Wickham co-wrote R for Data Science and released tidyverse 1.0.0 in September. In The tidy tools manifesto, Wickham explained the four basic principles to a tidy API.

Max Kuhn, the author of Applied Predictive Modeling and developer of the caret package for machine learning, joined RStudio in November. RStudio previously hired Joseph Rickert away from Microsoft.

AT&T Labs is doing some impressive work with R, including the development of a distributed back-end for out-of-core processing with Hadoop and other data platforms. At the UseR! Conference, Simon Urbanek presented a summary.

It is impossible to enumerate all of the interesting analysis performed in R this year. David Robinson’s analysis of Donald Trump’s tweets resonated; using tidyverse, tidytext, and twitteR, Robinson was able to distinguish between the candidate’s “voice” and that of his staffers on the same account.

On the Revolutions blog, Microsoft’s David Smith surveyed the growing role of women in the R community.

Microsoft and Oracle continued to support enhanced R distributions; we’ll cover these in Part Three of this survey.

Python

Among data scientists surveyed in the 2016 KDNuggets poll, 46% said they use Python for analytics, data mining, data science or machine learning projects in the past twelve months. That figure was up from 30% in 2015, and second only to R. In the 2016 O’Reilly Data Science Salary Survey, Python ranked third behind SQL and R.

Python Software Foundation (PSF) expanded the number and dollar value of its grants. PSF awarded many small grants to groups around the world that promote Python education and training. Other larger grants went to projects such as the design of the Python in Education site, improvements to the packaging ecosystem (see below), support for the Python 3.6 beta 1 release sprint, and support for major Python conferences.

The Python Packaging Authority launched the Warehouse project to replace the existing Python Packaging Index (PyPI.) Goals of the project include updating the visual identity, making packages more discoverable and improving support for package users and maintainers.

PSF released Python 3.6.0 and Python 2.7.13 in December.  The scikit-learn team released Version 0.18 with many enhancements and bug fixes; maintenance release Version 0.18.1 followed soon after that.

Many of the key developments for machine learning in Python were in the form of Python APIs to external packages, such as Spark, TensorFlow, H2O, and Theano. We cover these separately below.

Continuum Analytics expanded its commercial support for Python during the year and added commercially licensed software extensions which we will cover in Part Three.

Apache Software Foundation

There are ten Apache projects with machine learning capabilities. Of these, Spark has the most users, active contributors, commits, and lines of code added. Flink is a close second in active development, although most Flink devotees care more about its event-based streaming than its machine learning capabilities.

Top-Level Projects

There are four top-level Apache projects with machine learning functionality: Spark, Flink, Mahout, and OpenNLP.

Apache Spark

The Spark team delivered Spark 2.0, a major release, and six maintenance releases. Key enhancements to Spark’s machine learning capabilities in this release included additional algorithms in the DataFrames-based API, in PySpark and in SparkR, as well as support for saving and loading ML models and pipelines. The DataFrames-based API is now the primary interface for machine learning in Spark, although the team will continue to support the RDD-based API.

GraphX, Spark’s graph engine, remained static. Spark 2.0 included many other enhancements to Spark’s SQL and Streaming capabilities.

Third parties added 24 machine learning packages to Spark Packages in 2016.

The Spark user community continued to expand. Databricks reported 30% growth in Spark Summit attendees and 240% growth in Spark Meetup members. 18% of respondents to Databricks’ annual user survey reported using Spark’s machine learning library in production, up from 13% in 2015. Among data scientists surveyed in the 2016 KDNuggets poll, 22% said they use Spark; in the 2016 O’Reilly Data Science Salary Survey, 21% of the respondents reported using Spark.

The Databricks survey also showed that 61% of users work with Spark in the public cloud, up from 51% in 2015. As of December 2016, there are Spark services available from each of the major public cloud providers (AWS, Microsoft, IBM and Google), plus value-added managed services for data scientists from Databricks, Qubole, Altiscale and Domino Data.

Apache Flink

dataArtisans’ Mike Winters reviewed Flink’s accomplishments in 2016 without using the words “machine learning.” That’s because Flink’s ML library is still pretty limited, no doubt because Flink’s streaming runtime is the primary user attraction.

While there are many use cases for scoring data streams with predictive models, there are few real-world use cases for training predictive models on data streams. Machine learning models are useful when they generalize to a population, which is only possible when the process that creates the data is in a steady state. If a process is in a steady state, it makes no difference whether you train on batched data or streaming data; the latest event falls into the same mathematical space as previous events. If recent events produce major changes to the model, the process is not in a steady state, so we can’t rely on the model to predict future events.

Flink does not yet support PMML model import, a relatively straightforward enhancement that would enable users to generate predictions on streaming data with models built elsewhere. Most streaming engines support this capability.

There may be use cases where Flink’s event-based streaming is superior to Spark’s micro-batching. For the most part, though, Flink strikes me as an elegant solution looking for a problem to solve.

Apache Mahout

The Mahout team released four double-dot releases. Key enhancements include the Samsara math environment and support for Flink as a back end. Most of the single machine and MapReduce algorithms are deprecated, so what’s left is a library of matrix operators for Spark, H2O, and Flink.

Apache OpenNLP

OpenNLP is a machine learning toolkit for processing natural language text. It’s not dead; it’s just resting.

Incubator Projects

In 2016, two machine learning projects entered the Apache Incubator, while no projects graduated, leaving six in process at the end of the year: SystemML, PredictionIO, MADLib, SINGA, Hivemall, and SAMOA. SystemML and Hivemall are the best bets to graduate in 2017.

Apache SystemML

SystemML is a library of machine learning algorithms that run on Spark and MapReduce, originally developed by IBM Research beginning in 2010. IBM donated the code to Apache in 2015; since then, IBM has committed resources to developing the project. All of the major contributors are IBM employees, which begs the question: what is the point of open-sourcing software if you don’t attract a community of contributors?

The team delivered three releases in 2016, adding algorithms and other features, including deep learning and GPU support. Given the support from IBM, it seems likely that the project will hit Release 1.0 this year and graduate to top-level status.

Usage remains light among people not employed by IBM. There is no “Powered By SystemML” page, which implies that nobody else uses it. IBM added SystemML to BigInsights this year, which expands the potential reach to IBM-loyal enterprises if there are any of those left. It’s possible that IBM uses the software in some of its other products.

Apache PredictionIO

PredictionIO is a machine learning server built on top of an open source stack, including Spark, HBase, Spray, and Elasticsearch. An eponymous startup began work on the project in 2013; Salesforce acquired the company earlier this year and donated the assets to Apache. Apache PredictionIO entered the Apache Incubator in May.

Apache PredictionIO includes many templates for “prebuilt” applications that use machine learning. These include an assortment of recommenders, lead scoring, churn prediction, electric load forecasting, sentiment analysis, and many others.

Since entering the Incubator, the team has delivered several minor releases. Development activity is light, however, which suggests that Salesforce isn’t doing much with this.

Apache SINGA

SINGA is a distributed deep learning project originally developed at the National University of Singapore and donated to Apache in 2015. The platform currently supports feed-forward models, convolutional neural networks, restricted Boltzmann machines, and recurrent neural networks.  It includes a stochastic gradient descent algorithm for model training.

The team has delivered three versions in 2016, culminating with Release 1.0.0 in September. The release number suggests that the team thinks the project will soon graduate to top-level status; they’d better catch up with paperwork, however, since they haven’t filed status reports with Apache in eighteen months.

Apache MADLib

MADLib is a library of machine learning functions that run in PostgreSQL, Greenplum Database and Apache HAWQ (incubating). Work began in 2010 as a collaboration between researchers at UC-Berkeley and data scientists at EMC Greenplum (now Pivotal Software). Pivotal donated the software assets to the Apache Software Foundation in 2015, and the project entered Apache incubator status.

In 2016, the team delivered three minor releases. The active contributor base is tiny, averaging three contributors per month.

According to a survey conducted by the team, most users have deployed the software on Greenplum database. Since Greenplum currently ranks 35th in the DB-Engines popularity ranking and is sinking fast, this project doesn’t have anywhere to go unless the team can port it to a broader set of platforms.

Apache Hivemall

Originally developed by Treasure Data and donated to the Apache Software Foundation, Hivemall is a scalable machine learning library implemented as a collection of Hive UDFs designed to run on Hive, Pig or Spark SQL with MapReduce, Tez or Spark. The team organized in September 2016 and plans an initial release in Q1 2017.

Given the relatively mature state of the code, large installed base for Hive, and high representation of Spark committers on the PMC, Hivemall is a good bet for top-level status in 2017.

Apache SAMOA

SAMOA entered the Apache Incubator two years ago and died. It’s a set of distributed streaming machine learning algorithms that run on top of S4, Storm, and Samza.

As noted above, under Flink, there isn’t much demand for streaming machine learning. S4 is moribund, Storm is old news and Samza is going nowhere; so, you can think of SAMOA as like an Estate Wagon built on an Edsel chassis. Unless the project team wants to port the code to Spark or Flink, this project is toast.

Machine Learning Projects

This category includes general-purpose machine learning platforms that support an assortment of algorithms for classification, regression, clustering and association. Based on reported usage and development activity, we cover H2O, XGBoost, and Weka in this category.

Three additional projects are worth noting, as they offer graphical user interfaces and appeal to business users. KNIME and RapidMiner provide open-source editions of their software together with commercially licensed versions; we cover these in Part Three of this survey. Orange is a project of the Bioinformatics Laboratory, Faculty of Computer and Information Science, University of Ljubljana, Slovenia.

Vowpal Wabbit gets an honorable mention. Known to Kaggleists as a fast and efficient learner, VW’s user base is currently too small to warrant full coverage. The project is now domiciled at Microsoft Research. It will be interesting to see if MSFT does anything with it.

H2O

H2O is an open source machine learning project of H2O.ai, a commercial venture. (We’ll cover H2O.ai’s business accomplishments in Part Three of this report.)

In 2016, the H2O team updated Sparkling Water for compatibility with Spark 2.0. Sparkling Water enables data scientists to combine Spark’s data ingestion and ETL capabilities with H2O machine learning algorithms. The team also delivered the first release of Steam, a component that supports model management and deployment at scale, and a preview of Deep Water for deep learning.

For 2017, H2O.ai plans to add an automated machine learning capability and deliver a production release of Deep Water, with support for TensorFlow, MXNet and Caffe back ends.

According to H2O.ai, H2O more than doubled its user base in 2016.

XGBoost

A project of the University of Washington’s Distributed Machine Learning Common (DMLC), XGBoost is an optimized distributed gradient boosting library used by top data scientists, who appreciate its scalability and accuracy. Tianqi Chen and Carlos Guestrin published a paper earlier this year describing the algorithm. Machine learning startups DataRobot and Dataiku added XGBoost to their platforms in 2016.

Weka

Weka is a collection of machine learning algorithms written in Java, developed at the University of Waikato in New Zealand and distributed under GPU license. Pentaho and RapidMiner include the software in their commercial products.

We include Weka in this review because it is still used by a significant minority of data scientists; 11% of those surveyed in the annual KDnuggets poll said they use the software. However, reported usage is declining rapidly, and development has virtually flatlined in the past few years, which suggests that this project may go the way of the eponymous flightless bird.

Deep Learning Frameworks

We include in this category software whose primary purpose is deep learning. Many general-purpose machine learning packages also support deep learning, but the packages listed here are purpose-built for the task.

Since they were introduced in late 2015, Google’s TensorFlow and Microsoft’s Cognitive Toolkit have rocketed from nothing to leadership in the category. With backing from Amazon and others, MXNet is coming on strong, while Theano and Keras have active communities in the Python world. Meanwhile, older and more mature frameworks, such as Caffe, DL4J, and Torch, are getting buried by the new kids on the block.

Money talks; commercial support matters. It’s a safe bet that projects backed by Google, Microsoft and Amazon will pull away from the pack in 2017.

TensorFlow

TensorFlow is the leading deep learning framework, measured by reported usage or by development activity. Launched in 2015, Google’s deep learning platform went from zero to leadership in record time.

In April, Google released TensorFlow 0.8, with support for distributed processing. The development team shipped four additional releases during the year, with many additional enhancements, including:

  • Python 3.5 support
  • iOS support
  • Microsoft Windows support (selected functions)
  • CUDA 8 support
  • HDFS support
  • k-Means clustering
  • WALS matrix factorization
  • Iterative solvers for linear equations, linear least squares, eigenvalues and singular values

Also in April, DeepMind, Google’s AI research group, announced plans to switch from Torch to TensorFlow.

Google released its image captioning model in TensorFlow in September. The Google Brain team reported that this model correctly identified 94% of the images in the ImageNet 2012 benchmark.

In December, Constellation Research selected TensorFlow as 2016’s best innovation in enterprise software, citing its extensive use in projects throughout Google and strong developer community.

Microsoft Cognitive Toolkit

In 2016, Microsoft rebranded its deep learning framework as Microsoft Cognitive Toolkit (MCT) and released Version 2.0 to beta, with a new Python API and many other enhancements. In VentureBeat, Jordan Novet reports.

At the Neural Information Processing Systems (NIPS) Conference in early December, Cray announced that it successfully ran MCT on a Cray XC50 supercomputer with more than 1,000 NVIDIA Tesla P100 GPU accelerators.

Separately, Microsoft and NVIDIA announced a collaborative effort to support MCT on Tesla GPUs in Azure or on-premises, and on the NVIDIA DGX-1 supercomputer with Pascal GPUs.

Theano

Theano, a project of the Montreal Institute for Learning Algorithms at the University of Montreal, is a Python library for computationally intensive scientific investigation. It allows users to efficiently define, optimize and evaluate mathematical expressions with multi-dimensional arrays. (Reference here.) Like CNTK and TensorFlow, Theano represents neural networks as a symbolic graph.

The team released Theano 0.8 in March, with support for multiple GPUs. Two additional double-dot releases during the year added support for CuDNN v.5 and fixed bugs.

MXNet

MXNet, a scalable deep learning library, is another project of the University of Washington’s Distributed Machine Learning Common (DMLC). It runs on CPUs, GPUs, clusters, desktops and mobile phones, and supports APIs for Python, R, Scala, Julia, Matlab, and Javascript.

The big news for MXNet in 2016 was its selection by Amazon Web Services. Craig Matsumoto reports; Serdar Yegulalp explains; Eric David dives deeper; Martin Heller reviews.

Keras

Keras is a high-level neural networks library that runs on TensorFlow or Theano. Originally authored by Google’s Francois Chollet, Keras had more than 200 active contributors in 2016.

In the Huffington Post, Chollet explains how Keras differs from other DL frameworks. Short version: Keras abstracts deep learning architecture from the computational back end, which made it easy to port from Theano to TensorFlow.

DL4J

Updated, based on comments from Skymind CEO Chris Nicholson.

Deeplearning4j (DL4J) is a project of Skymind, a commercial venture. IT is an open-source, distributed deep-learning library written for Java and Scala. Integrated with Hadoop and Spark, DL4J runs on distributed GPUs and CPUs. Skymind benchmarks well against Caffe, TensorFlow, and Torch.

While Amazon, Google, and Microsoft promote deep learning on their cloud platforms, Skymind seeks to deliver deep learning on standard enterprise architecture, for organizations that want to train models on premises. I’m skeptical that’s a winning strategy, but it’s a credible strategy. Skymind landed a generous seed round in September, which should keep the lights on long enough to find out. Intel will like a deep learning framework that runs on Xeon boxes, so there’s a possible exit.

Skymind proposes to use Keras for a Python API, which will make the project more accessible to data scientists.

Caffe

Caffe, a project of the Berkeley Vision and Learning Center (BVLC) is a deep learning framework released under an open source BSD license.  Stemming from BVLC’s work in vision and image recognition, Caffe’s core strength is its ability to model a Convolutional Neural Network (CNN). Caffe is written in C++.  Users interact with Caffe through a Python API or through a command line interface.  Deep learning models trained in Caffe can be compiled for operation on most devices, including Windows.

I don’t see any significant news for Caffe in 2016.

The Year in Machine Learning (Part One)

This is the first installment in a four-part review of 2016 in machine learning and deep learning.

In the first post, we look back at ML/DL news organized in five high-level topic areas:

  • Concerns about bias
  • Interpretable models
  • Deep learning accelerates
  • Supercomputing goes mainstream
  • Cloud platforms build ML/DL stacks

In Part Two, we cover developments in each of the leading open source machine learning and deep learning projects.

Parts Three and Four will review the machine learning and deep learning moves of commercial software vendors.

Concerns About Bias

As organizations expand the use of machine learning for profiling and automated decisions, there is growing concern about the potential for bias. In 2016, reports in the media documented racial bias in predictive models used for criminal sentencing, discriminatory pricing in automated auto insurance quotes, an image classifier that learned “whiteness” as an attribute of beauty, and hidden stereotypes in Google’s word2vec algorithm.

Two bestsellers were published in 2016 that address the issue. The first, Cathy O’Neil’s Weapons of Math Destruction, is a candidate for the National Book Award. In a review for The Wall Street Journal, Jo Craven McGinty summarizes O’Neil’s arguments as “algorithms aren’t biased, but the people who build them may be.”

A second book, Virtual Competition, written by Ariel Ezrachi and Maurice Stucke, focuses on the ways that machine learning and algorithmic decisions can promote price discrimination and collusion. Burton Malkiel notes in his review that the work “displays a deep understanding of the internet world and is outstandingly researched. The polymath authors illustrate their arguments with relevant case law as well as references to studies in economics and behavioral psychology.”

Most working data scientists are deeply concerned about bias in the work they do. Bias, after all, is a form of error, and a biased algorithm is an inaccurate algorithm. The organizations that employ data scientists, however, may not commit the resources needed for testing and validation, which is how we detect and correct bias. Moreover, people in business suits often exaggerate the accuracy and precision of predictive models or promote their use for inappropriate applications.

In Europe, GDPR creates an incentive for organizations that use machine learning to take the potential for bias more seriously. We’ll be hearing more about GDPR in 2017.

Interpretable Models

Speaking of GDPR, beginning in 2018, organizations that use machine learning to drive automated decisions must be prepared to explain those decisions to the affected subjects and to regulators. As a result, in 2016 we saw considerable interest in efforts to develop interpretable machine learning algorithms.

— The MIT Computer Science and Artificial Intelligence Laboratory announced progress in developing neural networks that deliver explanations for their predictions.

— At the International Joint Conference on Artificial Intelligence, David Gunning summarized work to date on explainability.

— MIT selected machine learning startup Rulex as a finalist in its Innovation Showcase. Rulex implements a technique called Switching Neural Networks to learn interpretable rule sets for classification and regression.

— In O’Reilly Radar, Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin explained Local Interpretable Model-Agnostic Explanations (LIME), a technique that explains the predictions of any machine learning classifier.

The Wall Street Journal reported on an effort by Capital One to develop machine learning techniques that account for the reasoning behind their decisions.

In Nautilus, Aaron M. Bornstein asked: Is artificial intelligence permanently inscrutable?  There are several issues, including a lack of clarity about what “interpretability” means.

It is important to draw a distinction between “interpretability by inspection” versus “functional” interpretability. We do not evaluate an automobile by disassembling its engine and examining the parts; we get behind the wheel and take it for a drive. At some point, we’re all going to have to get behind the idea that you evaluate machine learning models by how they behave and not by examining their parts.

Deep Learning Accelerates

In a September Fortune article, Roger Parloff explains why deep learning is suddenly changing your life. Neural networks and deep learning are not new techniques; we see practical applications emerge now for three reasons:

— Computing power is cheap and getting cheaper; see the discussion below on supercomputing.

— Deep learning works well in “cognitive” applications, such as image classification, speech recognition, and language translation.

— Researchers are finding new ways to design and train deep learning models.

In 2016, the field of DL-driven cognitive applications reached new milestones:

— A Microsoft team developed a system that recognizes conversational speech as well as humans do. The team used convolutional and long short-term memory (LSTM) neural networks built with Microsoft Cognitive Toolkit (CNTK).

— On the Google Research Blog, a Google Brain team announced the launch of the Google Neural Machine Translation System, a system based on deep learning that is currently used for 18 million translations per day.

— In TechCrunch, Ken Weiner reported on advances in DL-driven image recognition and how they will transform business.

Venture capitalists aggressively funded startups that leverage deep learning in applications, especially those that can position themselves in the market for cognitive solutions:

Affectiva, which uses deep learning to read facial expressions in digital video, closed on a $14 million “D” round led by Fenox Venture Capital.

Clarifai, a startup that offers a DL-driven image and video recognition service, landed a $30 million Series B round led by Menlo Ventures.

Zebra Medical Vision, an Israeli startup, uses DL to examine medical images and diagnose diseases of the bones, brain, cardiovascular system, liver, and lungs. Zebra disclosed a $12 million venture round led by Intermountain Health.

There is an emerging ecosystem of startups that are building businesses on deep learning. Here are six examples:

Deep Genomics, based in Toronto, uses deep learning to understand diseases, disease mutations and genetic therapies.

— Cybersecurity startup Deep Instinct uses deep learning to predict, prevent, and detect threats to enterprise computing systems.

Ditto Labs uses deep learning to identify brands and logos in images posted to social media.

Enlitic offers DL-based patient triage, disease screening, and clinical support to make medical professionals more productive.

— Gridspace provides conversational speech recognition systems based on deep learning.

Indico offers DL-driven tools for text and image analysis in social media.

And, in a sign that commercial development of deep learning isn’t all hype and bubbles, NLP startup Idibon ran out of money and shut down. We can expect further consolidation in the DL tools market as major vendors with deep pockets ramp up their programs. The greatest opportunity for new entrants will be in specialized applications, where the founders can deliver domain expertise and packaged solutions to well-defined problems.

Supercomputing Goes Mainstream

To make deep learning practical, you need a lot of computing horsepower. In 2016, hardware vendors introduced powerful new platforms that are purpose-built for machine learning and deep learning.

While GPUs are currently in the lead, there is a serious debate under way about the relative merits of GPUs and FPGAs for deep learning. Anand Joshi explains the FPGA challenge. In The Next Platform, Nicole Hemsoth describes the potential of a hybrid approach that leverages both types of accelerators. During the year, Microsoft announced plans to use Altera FPGAs, and Baidu said it intends to standardize on Xilinx FPGAs.

NVIDIA Launches the DGX-1

NVIDIA had a monster 2016, tripling its market value in the course of the year. The company released the DGX-1, a deep learning supercomputer. The DGX-1 includes eight Tesla P100 GPUs, each of which is 12X faster than NVIDIA’s previous benchmark. For $129K you get the throughput of 250 CPU-based servers.

NVIDIA also revealed a Deep Learning SDK with Deep Learning primitives, math libraries, tools for multi-GPU communication, a CUDA toolkit and DIGITS, a model training system. The system works with popular Deep Learning frameworks like Caffe, CNTK, TensorFlow, and Theano.

Tech media salivated:

MIT Technology Review interviewed NVIDIA CEO Jen-Hsun Huang, who is now Wall Street’s favorite tech celebrity.

Separately, Karl Freund reports on NVIDIA’s announcements at the SC16 supercomputing show.

Early users of the DGX-1 include BenevolentAI, PartnersHealthCare, Argonne and Oak Ridge Labs, New York University, Stanford University, the University of Toronto, SAP, Fidelity Labs, Baidu, and the Swiss National Supercomputing Centre. Nicole Hemsoth explains how NVIDIA supports cancer research with its deep learning supercomputers.

Cray Releases the Urika-GX

Cray launched the Urika-GX, a supercomputing appliance that comes pre-loaded with Hortonworks Data Platform, the Cray Graph Engine, OpenStack management tools and Apache Mesos for configuration. Inside the box: Intel Xeon Broadwell cores, 22 terabytes of memory, 35 terabytes of local SSD storage and Cray’s high-performance network interconnect. Cray ships 16, 32 or 48 nodes in a rack in the third quarter, larger configurations later in the year.

Intel Responds

The headline on the Wired story about Google’s deep learning chip — Time for Intel to Freak Out — looks prescient. Intel acquired Nervana Systems, a 28-month-old startup working on hardware and software solutions for deep learning. Re/code reported a price tag of $408 million. The customary tech media unicorn story storm ensues.

Intel said it plans to use Nervana’s software to improve the Math Kernel Library and market the Nervana Engine alongside the Xeon Phi processor. Nervana neon is YADLF — Yet Another Deep Learning Framework — that ranked twelfth in usage among deep learning frameworks in KDnuggets’ recent poll. According to Nervana, neon benchmarks well against Caffe; but then, so does CNTK.

Paul Alcorn offers additional detail on Intel’s new Xeon CPU and Deep Learning Inference Accelerator. In Fortune, Aaron Pressman argues that Intel’s strategy for machine learning and AI is smart, but lags NVIDIA. Nicole Hemsoth describes Intel’s approach as “war on GPUs.”

Separately, Intel acquired Movidius, the folks who put a deep learning chip on a memory stick.

Cloud Platforms Build ML/DL Stacks

Machine learning use cases are inherently well-suited to cloud platforms. Workloads are ad hoc and project oriented; model training requires huge bursts of computing power for a short period. Inference workloads are a different matter, which is one of many reasons one should always distinguish between training and inference when choosing platforms.

Amazon Web Services

After a head fake earlier in the year when it publishing DSSTNE, a deep learning project that nobody wants, AWS announces that it will standardize on MXNet for deep learning. Separately, AWS launched three new machine learning managed services:

Rekognition, for image recognition

Polly, for text to speech

Lex, a conversational chatbot development platform

In 2014, AWS was first to market among the cloud platforms with GPU-accelerated computing services. In 2016, AWS added P2 instances with up to 16 Tesla K8- GPUs.

Microsoft Azure

Released in 2015 as CNTK, Microsoft rebranded its deep learning framework as Microsoft Cognitive Toolkit and released Version 2.0, with a new Python API and many other enhancements. The company also launched 22 cognitive APIs in Azure for vision, speech, language, knowledge, and search. Separately, MSFT released its managed service for Spark in Azure HDInsight and continued to enhance Azure Machine Learning.

MSFT also announced the Azure N-Series compute instances powered by NVIDIA GPUs for general availability in December.

Azure is one part of MSFT’s overall strategy in advanced analytics, which I’ll cover in Part Three of this review.

Google Cloud

In February, Google released TensorFlow Serving, an open source inference engine that handles model deployment after training and manages their lifetime.  On the Google Research Blog, Noah Fiedel explained.

Later in the Spring, Google announced that it was building its own deep learning chips, or Tensor Processing Units (TPUs). In Forbes, HPC expert Karl Freund dissected Google’s announcement. Freund believes that TPUs are actually used for inference and not for model training; in other words, they replace CPUs rather than GPUs.

Google launched a dedicated team in October to drive Google Cloud Machine Learning, and announced a slew of enhancements to its services:

— Google Cloud Jobs API provides businesses with capabilities to find, match and recommend jobs to candidates. Currently available in a limited alpha.

Cloud Vision API now runs on Google’s custom Tensor Processing Units; prices reduced by 80%.

Cloud Translation API will be available in two editions, Standard and Premium.

Cloud Natural Language API graduates to general availability.

In 2017, GPU-accelerated instances will be available for the Google Compute Engine and Google Cloud Machine Learning. Details here.

IBM Cloud

In 2016, IBM contributed heavily to the growing volume of fake news.

At the Spark Summit in June, IBM announced a service called the IBM Data Science Experience to great fanfare. Experienced observers found the announcement puzzling; the press release described a managed service for Apache Spark with a Jupyter IDE, but IBM already had a managed service for Apache Spark with a Jupyter IDE.

In November, IBM quietly released the service without a press release, which is understandable since there was nothing to crow about. Sure enough, it’s a Spark service with a Jupyter IDE, but also includes an R service with RStudio, some astroturf “community” documents and “curated” data sources that are available for free from a hundred different places. Big Whoop.

In IBM’s other big machine learning move, the company rebranded an existing SPSS service as Watson Machine Learning. Analysts fell all over themselves raving about the new service, apparently without actually logging in and inspecting it.

screen-shot-2016-10-30-at-11-05-33-am

Of course, IBM says that it has big plans to enhance the service. It’s nice that IBM has plans. We should all aspire to bigger and better things, but keep in mind that while IBM is very good at rebranding stuff other people built, it has never in its history developed a commercially successful software product for advanced analytics.

IBM Cloud is part of a broader strategy for IBM, so I’ll have more to say about the company in Part Three of this review.

Big Analytics Roundup (March 14, 2016)

HPE wins the internet this week by announcing the re-re-release of Haven, this time on Azure.  The other big story this week: Flink announces Release 1.0.

Third Time’s a Charm

Hewlett Packard Enterprise (HPE) announces Haven on Demand on Microsoft Azure; PR firestorm ensues.  Haven  is a loose bundle of software assets salvaged from the train wreck of Autonomy, Vertica, ArcSight and HP Operations Management machine learning suite, originally branded as HAVEn and announced by HP in June, 2013.  Since then, the software hasn’t exactly gone viral; Haven failed to make KDnuggets’ list of the top 50 machine learning APIs last December, a list that includes the likes of Ersatz, Hutoma and Skyttle.

One possible reason for the lack of virality: although several analysts described Haven as “open source”, HP did not release the Haven source code, and did not offer the software under an open source license.

Other than those two things, it’s open source.

In 2015, HP released Haven on Helion Public Cloud, HP’s failed cloud platform.

So this latest announcement is a re-re-release of the software. On paper, the library looks like it has some valuable capabilities in text, images video and audio analytics.  The interface and documentation look a bit rough, but, after all, this is a first third release.

Jim’s Latest Musings

Angus Loten of the WSJ’s CIO Journal interviews SAS CEO Jim Goodnight, who increasingly sounds like your great-uncle at Thanksgiving dinner, the one who complains about “these kids today.”  Goodnight compares cloud computing to mainframe time sharing.  That’s ironic, because although SAS runs in AWS, it does not offer elastic pricing, the one thing that modern cloud computing shares with timesharing.

Goodnight also pooh-poohs IoT, noting that “we don’t have any major IoT customers, and I haven’t seen a good example of IoT yet.”  SAS’ Product Manager for IoT could not be reached for comment.

Meanwhile, SAS held its annual analyst conference at a posh resort in Steamboat Springs, Colorado; in his report for Ventana Research, David Menninger gushes.

Herbalife Messes Up, Blames Data Scientists

Herbalife discloses errors reporting non-financial information, blames “database scripting errors.” The LA Times reports; Kaiser Fung comments.

Explainers

— Several items from the morning paper this week:

  • Adrian Colyer explains CryptoNets, a combination of Deep Learning and homohorphic encryption.  By encrypting your data before you load it into the cloud, you make it useless to a hacker.
  • Adrian explains Neural Turing Machines.
  • Adrian explains Memory Networks.
  • Citing a paper published by Google last year, Adrian explains why using personal knowledge questions for account recovery is a really bad thing.

— Data Artisans’ Robert Metzger explains Apache Flink.

— In a video, Eric Kramer explains how to leverage patient data with Dataiku Data Science Studio.

Perspectives

— In InfoWorld, Serdar Yegulalp examines Flink 1.0 and swallows whole the argument that Flink’s “pure” streaming is inherently superior to Spark’s microbatching.

— On the MapR blog, Jim Scott offers a more balanced view of Flink, noting that streaming benchmarks are irrelevant unless you control for processing semantics and fault tolerance.  Scott is excited about Flink ease of use and CEP API.

— John Leonard interviews Vincent de Lagabbe, CTO of bitcoin tracker Kaiko, who argues that Hadoop is unnecessary if you have less than a petabyte of data.  Lagabbe prefers Datastax Enterprise.

— Also in InfoWorld, Martin Heller reviews Azure Machine Learning, finds it too hard for novices.  I disagree.  I used AML in a classroom lab, and students were up and running in minutes.

Open Source Announcements

— Flink announces Release 1.0.  DataArtisans celebrates.

Teradata Watch

CEO Mike Koehler demonstrates confidence in TDC’s future by selling 11,331 shares.

Commercial Announcements

— Objectivity announces that Databricks has certified ThingSpan, a graph analytics platform, to work with Spark and HDFS.

— Databricks announces that adtech company Sellpoints has selected the Databricks platform to deliver a predictive analytics product.

Big Analytics Roundup (March 7, 2016)

Hortonworks wins the internet this week beating the drum for its partnership with Hewlett-Packard Enterprise.  The story is down under “Commercial Announcements,” just above the story about Hortonworks’ shareholder lawsuit.

Google releases a distributed version of TensorFlow, and HDP releases a new version of Dataflow.  We are reaching peak flow.

IBM demonstrates its core values.

Folks who fret about cloud security don’t understand that data is safer in the cloud than it is on premises.  There are simple steps you can take to reduce or eliminate concerns about data security.  Here’s a practical guide to anonymizing your data.

Explainers

In the morning paper, Adrian Colyer explains trajectory data mining,

On the AWS Big Data Blog, Manjeet Chayel explains how to analyze your data on DynamoDB with Spark.

Nicholas Perez explains how to log in Spark.

Altiscale’s Andrew Lee explains memory settings in part 4 of his series of Tips and Tricks for Running Spark on Hadoop.  Parts 1-3 are here, here and here.

Sayantam Dey explains topic modeling using Spark for TF-IDF vectorization.

Slim Baltagi updates all on state of Flink community.

Martin Junghanns explains scalable graph analytics with Neo4j and Flink.

On SlideShare, Vasia Kalavri explains batch and stream graph processing with Flink.

DataTorrent’s Thomas Weise explains exactly-once processing with DataTorrent Apache Apex.

Nishant Singh explains how to get started with Apache Drill.

On the Cloudera Engineering Blog, Xuefu Zhang explains what’s new in Hive 2.0.

On the Google Cloud Platform Blog, Matthieu Mayran explains how to build a recommender with the Google Compute Engine.

In TechRepublic, James Sanders explains Amazon Web Services in what he characterizes as a smart person’s guide.  If you’re not smart and still want to use AWS, go here.

Perspectives

We continue to digest analysis from Spark Summit East:

— Altiscale’s Barbara Lewis summarizes her nine favorite sessions.

— Jack Vaughan interviews attendees from CapitalOne, eBay, DataXu and some other guy who touts open source.

— Alex Woodie interviews attendees from Bloomberg and Comcast and grabs quotes from Tony Baer, Mike Gualtieri and Anjul Bhambhri, who all agree that Spark is a thing.

In other matters:

— In KDnuggets, Gregory Piatetsky attacks the idea of the “citizen data scientist” and give it a good thrashing.

— Paige Roberts probes the true meaning of “real time.”

— MapR’s Jim Scott compares Drill and Spark for SQL, offers his opinion on the strengths of each.

— Sri Ambati describes the road ahead for H2O.ai.

Open Source Announcements

— Google releases Distributed TensorFlow without an announcement.  On KDnuggets, Matthew Mayo applauds.

— Hortonworks announces a new release of Dataflow, which is Apache NiFi with the Hortonworks logo.  New bits include integrated security and support for Apache Kafka and Apache Storm.

— On the Databricks blog, Joseph Bradley et. al. introduce GraphFrames, a graph processing library that works with the DataFrames API.  GraphFrames is a Spark Package.

Commercial Announcements

— Hortonworks announces partnership with Hewlett Packard Enterprise to enhance Apache Spark.  HPE claims to have rewritten Spark shuffle for faster performance, and HDP will help them contribute the code back to Spark.  That’s nice.  Not exactly the ground-shaking announcement HDP touted at Spark Summit East, but nice.

— Meanwhile, Hortonworks investors sue the company, claiming it lied in a November 10-Q when it said it had enough cash on hand to fund twelve months of operations.  The basic issue is that Hortonworks burns cash faster than Kim Kardashian out for a spree on Rodeo Drive, spending more than $100 million in the first nine months of 2015, leaving $25 million in the bank.  Hortonworks claims analytic prowess; perhaps it should apply some of that know-how to financial controls.

— OLAP on Hadoop vendor AtScale announces 5X revenue growth in 2015, which isn’t too surprising since they were previously in stealth.  One would expect infinite revenue growth.

Big Analytics Roundup (February 29, 2016)

Happy Leap Day.  Tachyon’s rebranding as Alluxio, release of CaffeOnSpark and GA for Google Cloud Dataproc lead the hard news this week.  The Alluxio announcement has inspired big thinkers to share big thoughts.  And, we have a nice crop of explainers.  Scroll down to the bottom for another SQL on Hadoop benchmark.

Explainers

— In SearchDataManagement, Jack Vaughn explains Spark 2.0.

— In Datanami, Alex Woodie explains Structured Streaming in Spark 2.0.

— MapR’s Jim Scott explains Spark accumulators.   Jim also explains Spark Streaming.

— DataArtisans’ Fabian Hueske introduces Flink.

— In SlideShare, Julian Hyde explains streaming SQL.

— Wes McKinney explains why pandas users should be excited about Apache Arrow.

— On her blog, Paige Roberts explains Project Tungsten, complete with pictures.

— Someone from Dremio explains Drillix, which is what you get when you combine Apache Phoenix and Apache Drill. (h/t Hadoop Weekly).

Perspectives

— In TheNextPlatform, Timothy Prickett Morgan argues that Tachyon Caching (Alluxio) is bigger than Spark

— In SiliconAngle, Maria Deutscher opines that Alluxio (née Tachyon) could replace HDFS for Spark users.

— In The New Stack, Susan Hall speculates that Apache Arrow’s columnar data layer could accelerate Spark and Hadoop.  She means Hadoop in a general way, e.g. the Hadoop ecosystem.

— On the Dataiku blog, “Caroline” interviews John Kelly, Managing Director of Berkeley Research Group and asks him questions about data science.  Left unanswered: is it “Data-ikoo” or “Day-tie-koo?”

— Alpine Data Labs’ Steven Hillion ruminates on success.  He’d be better off ruminating on “how to raise your next round of venture capital.”

— Max Slater-Robins opines that Microsoft is inventing the future, which is even better than winning the internet.

— In ZDNet, Andrew Brust wonders if Databricks is vying for a full analytics stack, citing the new Dashboard feature as cause for wonder.  He’s just trolling.

— In Search Cloud Applications, Joel Shore opines that streaming analytics is replacing complex event processing, which makes sense.   He further opines that Flink will displace Spark for streaming, which doesn’t make sense.   Shore interviews IBM’s Nagui Halim about streaming here.

Open Source Announcements

— Alluxio (née Tachyon) announces Release 1.0.0.  Alluxio is open source software distributed through Git under an Apache license, but is not an Apache project.  Yet.  Release 1.0 includes frameworks for MapReduce, Spark, Flink and Zeppelin.  Daniel Gutierrez reports.

— Yahoo releases CaffeOnSpark, a distributed deep learning package.  Caffe is one of the better-known deep learning packages, with a track record in image recognition.  Software is available on Git.  For more information, see the Wiki.  Alex Handy reports; Charlie Osborne reports.

— RapidMiner China announces availability of an extension for deep learning engine DL4J.  The extension is open source, and works with the open source version of RapidMiner.  DL4J sponsor Skymind collaborated.

Commercial Announcements

–Tachyon Nexus, the commercial venture founded to support Tachyon, the memory-centric virtual distributed storage system, announces that it has rebranded as Alluxio.

— Google announces general availability for its Cloud Dataproc managed service for Spark and Hadoop.

Funding Announcements

Health analytics vendor Health Catalyst lands a $70M Series E round.

AtScale Benchmarks SQL-on-Hadoop Engines

On the AtScale blog, Trystan Leftwich summarizes results from a benchmark test of Hive on Tez (1.2/0.7), Cloudera Apache Impala (2.3) and Spark SQL (1.6).  The AtScale team tested Impala and Spark with Parquet and Hive on Tez with ORC.  For test cases, the team used TPC-H data arranged in a star schema, and ran 13 queries in each SQL engine multiple times, averaging the results.

While Hortonworks recommends ORC with Hive/Tez, there are published cases where users achieved good results with Hive/Tez on Parquet.  Since the storage format has a big impact on SQL performance, I would have tested Hive/Tez on Parquet as well.  AtScale did not respond to queries on this point.

Key findings:

  • All three engines performed about the same on single-table queries, and on queries joining three small tables.
  • Spark and Impala ran faster than Hive on queries joining three large tables.
  • Spark ran faster than Impala on queries joining four or more tables.

The team ran the same tests with AtScale’s commercial caching technology, with significant performance improvements for all three engines.

In concurrency testing, Impala performed much better than Hive or Spark.

Details of the test available in a white paper here (registration required).

2016 Big Analytics Predictions Roundup

Before publishing my own predictions for 2016 later this week, I thought it would be fun to round up published predictions on analytics and Big Data.  Looking through this list, I see a few patterns:

— Streaming is hot.  Analysts do not seem to understand distinctions between streaming data, streaming analytics and real-time decisioning.

— “Data Science” continues to be a term that means whatever you like.

— Security and anti-fraud analytics will be a thing in 2016.  (They were also a thing in 2015.)

— Industry analysts are divided about whether or not the analytics talent crunch will persist.

— IoT is a great concept for selling data management tools, but few know how to make sense of it.

On ZDNet, Andrew Brust summarizes 60 predictions from 17 executives and sees the following:

  1. Increased adoption of streaming analytics
  2. Maturation of IoT technologies
  3. Value and maturity in Big Data products
  4. Increased deployment of artificial intelligence and machine learning

On KDnuggets, Gregory Piatetsky reports on five predictions for 2016 from Tom Davenport of the International Institute of Analytics.  (Webinar replay here.)

  1. Cognitive technology will be the next thing after automated analytics.
  2. Analytical microservices will facilitate embedded analytics.
  3. Data Science and predictive analytics will merge.
  4. The analytics talent crunch will ease due to increased enrollment in graduate programs.
  5. Analytics will focus on data curation and management.

Davenport is smoking something if he thinks cognitive computing will be a thing in 2016.

In Forbes, Gil Press synthesizes the IIA’s predictions (above) with predictions from Forrester, IDC and Gartner to get six predictions:

  1. Analytics will be embedded everywhere.
  2. Machine learning will replace manual data wrangling.
  3. The shortage of analytics talent will persist.
  4. Analytics projects will be riskier than typical IT projects.
  5. Cognitive computing will be the next buzzword.  (Press clearly does not agree with Davenport).
  6. Data monetization will take off.

Predictions (2) and (3) conflict with one another; since analysts spend 80% of their time data wrangling, tooling that automates this step will relieve the talent shortage.

On Datanami, Alex Woodie wades through “dozens” of predictions and publishes the 33 most interesting.  Many of these are self-serving, obvious or nonsensical, so I will do the work Woodie’s editor did not do and distill the list to five:

  1. Streaming analytics will mature and prove its worth.
  2. Apache Kafka will be an essential integration point in enterprise infrastructure.
  3. Business user access to Hadoop data will improve.
  4. Spark will significantly displace MapReduce for Hadoop workloads.
  5. Spark processing outside of Hadoop will also increase significantly.

Teryn O’Brien of Silicon Angle reports on a webinar hosted by Alteryx that included Bob Laurent of Alteryx, Clarke Patterson of Cloudera and Francois Ajenstat of Tableau.  The panel offered three predictions:

  1. Analyst jobs will be hot and analysts will be everyday heroes.
  2. Spark, the cloud and IoT will be big in 2016.
  3. Advanced analytics will play a key role in the Presidential election.

On ITPortal, Dell’s Todd O’Brien predicts three things for 2016:

  1. The role of Citizen Data Scientists will expand and evolve.  (Me: WTF?)
  2. Analytics will significantly affect vertical markets, especially manufacturing.
  3. All innovation will trace back to analytics

On the first point, I think that O’Brien is trying to say that companies should buy analytics software that is easy to use, like what Dell offers.

On the FICO blog, FICO’s chief analytics officer Scott Zoldi offers five predictions for 2016:

  1. Streaming analytics will come of age in 2016.
  2. “Prescriptive analytics” (his term for anomaly detection) will be a must-have security technology.
  3. “Lifestyle analytics” (predictions embedded in consumer interactions) will integrate prescriptive analytics into daily life.
  4. Businesses will rethink Big Data governance.
  5. Fake data scientists will emerge.

On a SAS blog, Polly Mitchell-Guthrie predicts five things:

  1. Machine learning (will be) established in the enterprise.
  2. IOT hype hits reality.
  3. Big Data moves beyond hype.
  4. Analytics improve cybersecurity.
  5. Analytics drives increased industry-academic interaction.

It’s standard practice at SAS to call any new IT trend “hype.”

In a press release, the health analytics vendor SCIO Health Analytics makes four predictions for 2016:

  1. Greater focus on educating health consumers.
  2. Demand for more precision in health analytics.
  3. More time will be spent on reimbursement strategies.
  4. The need for data and transparency across domains will increase.

Prediction #1 may be true, but it’s not really about health analytics.

On the Talend blog, CMO Ashley Stirrup predicts four things:

  1. Real-time analytics will take center stage
  2. New business threats will emerge
  3. CIO turnover will accelerate
  4. Businesses will retool

#2 and #4 aren’t really predictions, they simply state the obvious.

Big Analytics Roundup (November 16, 2015)

Just three main stories this week: possible trouble for a pair of analytic startups; Google releases TensorFlow to open source; and H2O delivers new capabilities at its annual meeting.

In other news, the Spark team announces Release 1.5.2, a maintenance release; and the Mahout guy announces Release 0.11.1, with bug fixes and performance improvements. (h/t Hadoop Weekly)

Two items of note from the Databricks blog:

— Darin McBeath describes Elsevier’s Spark use case and introduces spark-xml-utils, a Spark package contributed by his team.  The package enables the Spark user to filter documents based on an Path expression, return specific nodes for an Path/XQuery expression and transform documents using an XLST stylesheet.

— Rachit Agarwal and Anurag Khandelwal of Berkeley’s AMPLab introduce Succinct, a distributed datastore for queries on compressed data.   They announce release of Succinct Spark, a Spark package that enables search, count, range and random access queries on compressed RDDs.  The authors claim a 75X performance advantage over native Spark using Succinct as a document store,

Three interesting stories on streaming data:

  • In a podcast, Data Artisans CTO Stephan Ewen discusses Flink, Spark and the Kappa architecture.
  • Techalpine’s Kaushik Pal compares Spark and Flink for streaming data.
  • Will McGinnis helps you get started with Python and Flink.

(1) Analytic Startups in Trouble

In The Information, Steve Nellis and Peter Schulz explain why startups return to the funding well frequently — and why those that don’t may be in trouble.  Venture funding isn’t a perfect indicator of success, but is often the only indicator available.  On the list: Skytree Software and Alpine Data Labs.

(2) Google Releases TensorFlow for Machine Learning

On the Google Research blog, Google announces open source availability of TensorFlow.  TensorFlow is Google’s second generation machine learning system; it supports Deep Learning as well as any computation that can be expressed as a flow graph.   Read this white paper for details of the system.  At present, there are Python and C++ APIs;  Google notes that the C++ API may offer some performance advantages.

Video intro here.

In Wired, Cade Metz reports; Erik T. Mueller dismisses; and Metz returns to note that Deep Learning can leverage GPUs, and that AI’s future is in data, as if we didn’t know these things already.

On Slate, Will Oremus feels the buzz.

On his eponymous blog, Sachin Joglekar explains how to do k-means clustering with TensorFlow.

Separately, in VentureBeat, Jordan Novet rounds up open source frameworks for Deep Learning.

(3) H2O.ai Releases Steam

It’s not a metaphor.  At its second annual H2O World event, H2O releases Steam, an open source data science hub that bundles model selection, model management and model scoring into a single container for elastic deployment.

On the H2O Blog, Yotam Levy wraps Day One, Day Two and Day Three of the H2O World event.  Speaker videos are here, slides here.  (Registration required.)  Some notable presentations:

— H2O: Tomas Nykodym on GLM; Mark Landry on GBM and Random Forests; Arno Candel on Deep Learning; Erin LaDell on Ensemble Modeling.

— Michal Malohlava of H2O and Richard Garris of Databricks explain how to run H2O on Databricks Cloud.  Separately, Michal demonstrates Sparkling Water, a Spark package that enables a Spark user to call H2O algorithms; Nidhi Mehta leads a hands-on with PySparkling Water;  and Xavier Tordoir of Data Fellas exhibits Interactive Genomes Clustering with Sparkling Water on the Spark Notebook.

— Szilard Pafka of Epoch summarizes his work to date benchmarking R, Python, Vowpal Wabbit, H2O, xgboost and Spark MLLib.  As reported previously, Pafka’s benchmarks show that H2O and xgboost are the best performers; they are faster and deliver more accurate models.

As reported in last week’s roundup, H2O.ai also announces a $20 million “B” round.

Big Analytics Roundup (November 9, 2015)

My roundup of the Spark Summit Europe is here.

Two important events this week:

  • H2O World starts today and runs through Wednesday at the Computer History Museum in Mountain View CA.   Yotam Levy summarizes here and here.
  • Open Data Science Conference meets November 14-15 at the Marriott Waterfront in SFO

Five backgrounders and explainers:

  • At HUG London, Apache’s Ufuk Celebi delivers a nice intro to Flink.
  • On the Databricks blog, Yesware’s Justin Mills explains how his team migrates Spark applications from concept through prototype through production.
  • On Slideshare, Alpine’s Holden Karau delivers an overview of Spark with Python.
  • Chloe Green wakes from a three year slumber and discovers Spark.
  • On the Cloudera Engineering blog, Madhu Ganta explains how to build a CEP app with Spark and Drools.

Third quarter financials drive the news:

(1) MapR: We Grew 160% in Q3

MapR posts its biggest quarter ever.

(2) HDP: We Grew 168% in Q3

HDP loses $1.33 on every dollar sold, tries to make it up on volume.  Stock craters.

(3) Teradata: We Got A Box of Steak Knives in Q3

Teradata reports more disappointing sales as customers continue to defer investments in big box solutions for data warehousing.  This is getting to be a habit with Teradata; the company missed revenue projections for 2014 as well as the first and second quarters of this year.  Any company can run into headwinds, but a management team that consistently misses targets clearly does not understand its own business and needs to go.

Full report here.

(4) “B” Round for H2O.ai

Machine learning software developer H2O.ai announces a $20 million Series B round led by Paxion Capital Partners.  H2O.ai leads development of H2O, an open source project for distributed in-memory machine learning.  The company reports 25 new support customers this year.

(5) Fuzzy Logix Lands Funds

In-database analytics vendor Fuzzy Logix announces a $5 million “A” round from New Science Ventures.  Fuzzy offers a library of analytic functions that run in a number of high-performance databases and in HiveQL.

(6) New Optimization Package for Spark

On the Databricks blog, Aaron Staple announces availability of Spark TFOCS, an optimization package based on the eponymous Matlab package.  (TFOCS=Templates for First Order Conic Solvers.)

(7) WSO2 Delivers IoT App on Spark 

IoT middleware vendor WSO2 announces Release 3.0 of its open source Data Analytics Server (DAS) platform.   DAS collects data streams and applies batch, real-tim or interactive analytics; predictive analytics are in the roadmap.  For streaming data sources, DAS supports java agents, javascript clients and 100+ connectors.  The software runs on Spark and Lucene.

(8) Hortonworks: We Aren’t Irrelevant

On the Hortonworks blog, Vinay Shukla and Ram Sriharsha tout Hortonworks’ contributions to Spark, including ORC support, an Ambari stack definition for Spark, tighter integration between Hive and Spark, minor enhancements to ML and user-facing documentation.  Looking at the roadmap, they discuss Magellan for geospatial and Zeppelin notebooks. (h/t Hadoop Weekly).

(9) Apache Drill Delivers Fast SQL-on-Laptop

On the MapR blog, Mitsutoshi Kiuchi offers a case study in how to run a silly benchmark.

Comparing the functionality of Drill and Spark SQL, Kiuchi argues that Drill “supports” NoSQL databases but Spark does not, relegating Spark’s packages to a footnote.  “Support” is a loaded word with open source software; technically, nothing is supported unless you pay for it, in which case the scope of support is negotiated as part of the SLA.  It’s also worth noting that MongoDB developed Spark’s interface to MongoDB (for example), which provides a certain amount of confidence.

Kiuchi does not consider other functional areas, such as security, YARN support, query fault tolerance, the user interface, metastore management and view support, where Drill comes up short.

In a previously published performance test of five SQL engines, Spark successfully ran nine out of eleven queries, while Drill ran eight out of ten.  On the eight queries both engines ran, Drill was slightly faster on six.  For this benchmark, Kiuchi runs three queries on his laptop with a tiny dataset.

As a general rule, one should ignore SQL-on-Hadoop benchmarks unless they run industry standard queries (e.g. TPC) with large datasets in a distributed configuration.

Spark Summit Europe Roundup

The 2015 Spark Summit Europe met in Amsterdam October 27-29.  Here is a roundup of the presentations, organized by subject areas.   I’ve omitted a few less interesting presentations, including some advertorials from sponsors.

State of Spark

— In his keynoter, Matei Zaharia recaps findings from Databricks’ Spark user survey, notes growth in summit attendance, meetup membership and contributor headcount.  (Video here). Enhancements expected for Spark 1.6:

  • Dataset API
  • DataFrame integration for GraphX, Streaming
  • Project Tungsten: faster in-memory caching, SSD storage, improved code generation
  • Additional data sources for Streaming

— Databricks co-founder Reynold Xin recaps the last twelve months of Spark development.  New user-facing developments in the past twelve months include:

  • DataFrames
  • Data source API
  • R binding and machine learning pipelines

Back-end developments include:

  • Project Tungsten
  • Sort-based shuffle
  • Netty-based network

Of these, Xin covers DataFrames and Project Tungsten in some detail.  Looking ahead, Xin discusses the Dataset API, Streaming DataFrames and additional Project Tungsten work.  Video here.

Getting Into Production

— Databricks engineer and Spark committer Aaron Davidson summarizes common issues in production and offers tips to avoid them.  Key issues: moving beyond Python performance; using Spark with R; network and CPU-bound workloads.  Video here.

— Tuplejump’s Evan Chan summarizes Spark deployment options and explains how to productionize Spark, with special attention to the Spark Job Server.  Video here.

— Spark committer and Databricks engineer Andrew Or explains how to use the Spark UI to visualize and debug performance issues.  Video here.

— Kostas Sakellis and Marcelo Vanzin of Cloudera provide a comprehensive overview of Spark security, covering encryption, authentication, delegation and authorization.  They tout Sentry, Cloudera’s preferred security platform.  Video here.

Spark for the Enterprise

— Revisting Matthew Glickman’s presentation at Spark Summit East earlier this year, Vinny Saulys reviews Spark’s impact at Goldman Sachs, noting the attractiveness of Spark’s APIs, in-memory processing and broad functionality.  He recaps Spark’s viral adoption within GS, and its broad use within the company’s data science toolkit.  His wish list for Spark: continued development of the DataFrame API; more built-in formulae; and a better IDE for Spark.  Video here.

— Alan Saldich summarizes Cloudera’s two years of experience working with Spark: a host of engineering contributions and 200+ customers (including Equifax, Barclays and a slide full of others).  Video here.  Key insights:

  • Prediction is the most popular use case
  • Hive is most frequently co-installed, followed by HBase, Impala and Solr.
  • Customers want security and performance comparable to leading relational databases combined with simplicity.

Data Sources and File Systems

— Stephan Kessler of SAP and Santiago Mola of Stratio explain Spark integration with SAP HANA Vora through the Data Sources API.  (Video unavailable).

— Tachyon Nexus’ Gene Pang offers an excellent overview of Tachyon’s memory-centric storage architecture and how to use Spark with Tachyon.  Video here.

Spark SQL and DataFrames

— Michael Armbrust, lead developer for Spark SQL, explains DataFrames.  Good intro for those unfamiliar with the feature.  Video here.

— For those who think you can’t do fast SQL without a Teradata box, Gianmario Spacagna showcases the Insight Engine, an application built on Spark.  More detail about the use case and solution here.  The application, which requires many very complex queries, runs 500 times faster on Spark than on Hive, and likely would not run at all on Teradata.  Video here.

— Informatica’s Kiran Lonikar summarizes a proposal to use GPUs to support columnar data frames.  Video here.

— Ema Orhian of Atigeo describes jaws, a restful data warehousing framework built on Spark SQL with Mesos and Tachyon support.  Video here.

Spark Streaming

— Helena Edelson, VP of Product Engineering at Tuplejump, offers a comprehensive overview of streaming analytics with Spark, Kafka, Cassandra and Akka.  Video here.

— Francois Garillot of Typesafe and Gerard Maas of virdata explain and demo Spark Streaming.    Video here.

— Iulian Dragos and Luc Bourlier explain how to leverage Mesos for Spark Streaming applications.  Video here.

Data Science and Machine Learning

— Apache Zeppelin creator and NFLabs co-founder Moon Soo Lee reviews the Data Science lifecycle, then demonstrates how Zeppelin supports development and collaboration through all phases of a project.  Video here.

— Alexander Ulanov, Senior Research Scientist at Hewlett-Packard Labs, describes his work with Deep Learning, building on MLLib’s multilayer perceptron capability.  Video here.

— Databricks’ Hossein Falaki offers an introduction to R’s strengths and weaknesses, then dives into SparkR.  He provides an overview of SparkR architecture and functionality, plus some pointers on mixing languages.  The SparkR roadmap, he notes, includes expanded MLLib functionality; UDF support; and a complete DataFrame API.  Finally, he demos SparkR and explains how to get started.  Video here.

— MLlib committer Joseph Bradley explains how to combine the strengths R, scikit-learn and MLlib.  Noting the strengths of R and scikit-learn libraries, he addresses the key question: how do you leverage software built to support single-machine workloads in a distributed computing environment?   Bradley demonstrates how to do this with Spark, using sentiment analysis as an example.  Video here.

— Natalino Busa of ING offers an introduction to real-time anomaly detection with Spark MLLib, Akka and Cassandra.  He describes different methods for anomaly detection, including distance-based and density-based techniques. Video here.

— Bitly’s Sarah Guido explains topic modeling, using Spark MLLib’s Latent Dirchlet Allocation.  Video here.

— Casey Stella describes using word2vec in MLLib to extract features from medical records for a Kaggle competition.  Video here.

— Piotr Dendek and Mateusz Fedoryszak of the University of Warsaw explain Random Ferns, a bagged form of Naive Bayes, for which they have developed a Spark package. Video here.

GeoSpatial Analytics

— Ram Sriharsha touts Magellan, an open source geospatial library that uses Spark as an engine.  Magellan, a Spark package, supports ESRI format files and GeoJSON; the developers aim to support the full suite of OpenGIS Simple Features for SQL.  Video here.

Use Cases and Applications

— Ion Stoica summarizes Databricks’ experience working with hundreds of companies, distills to two generic Spark use cases:  (1) the “Just-in-Time Data Warehouse”, bypassing IT bottlenecks inherent in conventional DW; (2) the unified compute engine, combining multiple frameworks in a single platform.  Video here.

— Apache committer and SKT engineer Yousun Jeong delivers a presentation documenting SKT’s Big Data architecture and a use case real-time analytics.  SKT needs to perform real-time analysis of the radio access network to improve utilization, as well as timely network quality assurance and fault analysis; the solution is a multi-layered appliance that combines Spark and other components with FPGA and Flash-based hardware acceleration.  Video here.

— Yahoo’s Ayman Farahat describes a collaborative filtering application built on Spark that generates 26 trillion recommendations.  Training time: 52 minutes; prediction time: 8 minutes.  Video here.

— Sujit Pal explains how Elsevier uses Spark together with Solr, OpenNLP to annotate documents at scale.  Elsevier has donated the application, called SoDA, back to open source.  Video here.

— Parkinson’s Disease affects one out of every 100 people over 60, and there is no cure.  Ido Karavany of Intel describes a project to use wearables to track the progression of the illness, using a complex stack including pebble, Android, IOS, play, Phoenix, HBase, Akka, Kafka, HDFS, MySQL and Spark, all running in AWS.   With Spark, the team runs complex computations daily on large data sets, and implements a rules engine to identify changes in patient behavior.  Video here.

— Paula Ta-Shma of IBM introduces a real-time routing use case from the Madrid bus system, then describes a solution that includes kafka, Secor, Swift, Parquet and elasticsearch for data collection; Spark SQL and MLLib for pattern learning; and a complex event processing engine for application in real time.  Video here.

Big Analytics Roundup (November 2, 2015)

Spark Summit Europe, Oracle Open World and IBM Insights all met last week, as did Cloudera’s Wrangle conference for data scientists.

But in the really important news, KC beats the Mets to take the Series.

Top news from the Spark Summit is Typesafe’s announcement of Spark support, plus some insight into what’s coming in Spark 1.6.  I will publish a separate roundup for the Spark Summit next week  when presentations are available.

Nine stories this week:

(1) Typesafe Announces Spark Support

Typesafe, the commercial venture behind Scala and Akka, announces commercial support for Apache Spark.   Planned service offerings include an offer of one day business hour response to questions for projects in development.  For production, SLAs range from 4 hour turnaround during business hours up to 24/7 with one hour turnaround.

(2) More Funding for Alteryx

The New York Times reports that Alteryx has landed an $85 million “C” round, led by Iconiq Capital.  That makes a total of $163 million in four rounds for the company.

(3) Oracle Adds Spark to Cloud

At Oracle Open World, Oracle announces Oracle Cloud Platform for Big Data, a PaaS offering;  Dave Ramel covers the story.   Key new bits include automated ingestion, preparation, repair, enrichment and governance, all built in Spark; and a DBaaS offering with Hadoop, Spark and NoSQL data services.

(4) IBM Adds Spark Support to Analytics Server

Full story here.  Great news for those who want to use the high-end version of the second most popular data mining workbench with the third and fourth most popular Hadoop distributions.

(5) Ned Explains Zeppelin

Ned’s Blog provides a nice Zeppelin walk-through, noting the UI’s rich list of language interpreters, which currently includesL HiveQL, Spark, Flink, Postgres, HAWQ, Tajo, AngularJS, Cassandra, Ignite, Phoenix, Geode, Kylin and Lens.

(6) IIT and ANL Deliver BSP with ZHT

Researchers from the Illinois Institute of Technology, Argonne Labs and Hortonworks report that they have implemented a graph processing system based on Bulk Synchronous Processing on ZHT, a distributed key-value store.   Nicole Hemsoth reports.   The new engine, called Pregelix, when benchmarked against Giraph, GraphLab, GraphX and Hama, outshines them all.

(7) Wrangle 2015 Meets in SFO

Cloudera’s Justin Kestelyn summarizes the event, which hosted data science teams from the likes of Uber, Facebook and Airbnb.  Tony Baer offers the trite perspective that data science is about people.

(8) MapR Offers Free Spark Training

MapR announces availability of its first free Apache Spark course as part of its Hadoop On-Demand Training program.  No word on quality, but it’s hard to beat the price.

(9) Cloudera Pushes HUE for Spark

On the Cloudera Engineering blog, Justin Kestelyn explains how to use HUE’s notebook app with SQL and Spark.